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PREFACE
(First edition)

Lunda-designs are a type of black-and-white design that I
discovered while analyzing properties of a special class of sona sand
drawings from eastern Angola and neighboring regions of Zambia and
Congo / Zaire. The elements of this class are mirror-generated curves,
and generate, 1n turn, Lunda-designs.

The chapters of this book are comprised of papers on mirror
curves, Lunda-designs and related concepts such as Lunda-
polyominoes and Lunda-patterns. Most chapters may be read
independently of each other.

Chapter 1 1s a partial translation of Chapter 6 of the second
volume of Sona Geometry, and analyses the mirror curve class of sona
sand drawings and some of their basic properties. In this chapter, 1
also describe the discovery of Lunda-designs. Chapters 2 and 3
present an introduction to Lunda-designs, their symmetries, and some
of their generalizations such as Lunda-k-designs and hexagonal
Lunda-designs. These papers were published in the international
journals Visual Mathematics (1999) and Computers and Graphics
(1997) respectively.

In Chapter 4, I introduce the concepts of Lunda-polyominoes and
Lunda-animals, and evaluate the number of possible paths of given
lengths that may be traversed by Lunda-animals. The famous
sequence of Fibonacct surprisingly appears in this context.

Chapter 5 presents a first approximation for the number of
Lunda-n-ominoes. In Chapters 6 and 7, I explore special classes of
Lunda-polyominoes such as symmetrical closed Lunda-polyominoes
and Lunda-spirals. Finally, in Chapter 8, I show that for all twenty-
four classes of one-color and two-color, one-dimensional patterns, it is
possible to construct Lunda-strip-patterns, which belong to them.
Furthermore, 1 present examples of one-color and two-color, two-
dimensional Lunda-patterns.




Appendix 1 presents the proof of the theorem that every mirror
design generates a Lunda-design, and, inversely, for every (finite)
Lunda-design a mirror design that generates 1t may be constructed.

Lunda-designs present a concrete example of how
ethnomathematical research can lead to both fruitful and interesting
ideas of serious mathematical reflection. 1 hope the book LUNDA
Geometry will stimulate further research on these aesthetically
attractive figures.
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PREFACE
(Second edition)

The new edition of the book Lunda Geometry contains two
additional chapters. Chapter 9, entitled On the Geometry of Celtic
knots and their Lunda-designs, was published in the British journal
Mathematics in School (1999). Chapter 10 1s the last section of an
invited paper presented at the Wenner-Gren International Symposium
“Symmetry 2000 (Stockholm, September 13-16, 2000) and published
in the proceedings. The new edition does not include the review of
Solomon Golomb’s book Polvominoes, published 1n Archives
Internationales d 'Histoire des Sciences (1998, 48, No. 140, 174-176).

Chapter 4 of my book Geomertry from Africa: Mathematical and
Educational Explorations, published by the MAA (1999), presents an
introduction to Lunda-designs and includes a section on Lunda-
polyhedral-designs and a board game. The relationship between
Lunda-designs and magic squares 1s explored in a paper published in
The College Mathematics Journal (2000).

The study of Lunda-designs led to the discovery of Liki-designs
(2002a, 2002b) and of various types of matrices, including cycle
matrices (see e.g. the papers published 1n the electronic journal Visual
Mathematics). The book Adventures in the World of Matrices (2007d)
presents an introduction to cycle matrices. Further books on the
beautiful geometry and linear algebra of Lunda-designs are
forthcoming,

The paper Lunda Syvmmetry where Geometry meets Art (2003)
explores some relationships between Lunda Geometry and art.
Mathematician and artist John Sims of the Ringling School of Art and
Design (Sarasota, Florida) organized a math-art exhibition including
some of colorful Lunda-designs 1 had prepared. A book on Lunda-
designs and art is in preparation.

Maputo, October 2007
Paulus Gerdes
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Chapter 1

ON SONA SAND DRAWINGS, MIRROR CURVES
AND THE GENERATION OF LUNDA-DESIGNS

1.1 About sona sand drawings

The sona tradition belongs to the heritage of the Cokwe and
neighboring peoples in eastern Angola, and northwestern Zambia.
When the Cokwe gathered at their village meeting places or at their
hunting camps, they usually sat around a fire or 1n the shadow of leafy
trees spending their time 1n conversations illustrated by drawings in
the sand. These drawings are called /usona (singular) or sona (plural).

Each boy learnt the meaning and execution of the easier sona
during their period of intensive schooling, the initiation rites. The
more complicated sona were transmitted by specialists, called the
akwa kuta sona (those who know how to draw), to their male
descendants. These drawing experts were at the same time the
storytellers who used the sand drawings as illustrations for proverbs,
fables, games, riddles and animals.

In order to facilitate the memorization of their standardized sona,
the akwa kuta sona invented an interesting mnemonic device. After
cleaning and smoothing the ground, they first set out an orthogonal
grid of equidistant points with their fingertips. The number of rows
and columns depends on the motif to be represented. Then they draw
a line figure that embraces all the grid points. To do so they apply the
geometrical algorithm that corresponds to the motif to be represented.
Figure 1.1 displays an example: the line figure represents the path
followed by a wild chicken trying to escape its hunters.

11



Figure 1.1

An analysis of the sona sand drawing tradition and a contribution
to 1ts reconstruction is presented in the first volume of my book Sona
Geometry — Reflections on the tradition of sand drawings in Africa
South of the equator (1994, 20006),

1.2 Towards a discovery |

When one studies a proof one rarely learns how the
mathematician discovered his result. The path that leads towards a
discovery 1s generally very different from the paved road of the
deduction. The path to the discovery begins by zigzagging across a
densely vegetated area full of obstacles, and apparently without exit,
until suddenly 1t comes to an open space with flashes of surprise.
Almost immediately the delight of the unexpected “heureka™ (Greek:
“I found”, “I discovered”) opens the road triumphantly.

Often confronted with students’ question about how I discovered
the theorems which will be proved in the next section, I will now try to
re-open the road in the hope of stimulating mathematical research by
new generations of akwa kuta sona — drawing experts. Once the
road is reconstructed, the mystery of inspiration is solved.

In order to facilitate the execution of the sorna sand drawings I
was analyzing, I became used to drawing them on squared paper with
a distance of two units between two successive grid points (see Figure
1.2).

1 This section 1s a partial translation of chapter 6 of the author’s
book Geometria Sona, Vol. 2, ISP, Maputo, 1993. The questions
to the readers and the problem section have been deleted.

12



Figure 1.2

In this way, a monolinear drawing like the “chased chicken path”
(see Figure 1.3) passes exactly once through each of the small squares
inside the circumscribed rectangle.

Figure 1.3

This allows the possibility of enumerating the small squares, 1
being the number attributed to the small square where one starts the
line, and 2 the number of the second unit square through which the
curve passes, and so on successively until the closed curve 1s
complete. See the example begun in Figure 1.4 and concluded in
Figure 1.5.

13
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The path followed by the “chased chicken” is aesthetically
attractive. The design displays a rotational symmetry of 180° (see
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Figure 1.1 once more). This leads to the following question: How 1s
the beauty and the symmetry of this sand drawing reflected in the
enumeration of the small squares?

For example, what relationship does exist between two small

squares, which correspond to each other under a rotation of 180°? The
first number of the first row, 106, corresponds to the last number of the
last row, 15; the second number of the first row, 105, corresponds to
the penultimate number of the last row, 16. In both cases, the sum of
the numbers of the two corresponding small squares 1s equal to 121.
Will the same happen in the other cases? The small square with
number 72 corresponds to the small square with number 49; the small
square of number 93 corresponds to the small square with number 28,
etc. (see Figure 1.6). The sum 1s always equal to 121, that 1s, equal to
the number of the last small square 1n the enumeration, plus one.

Figure 1.6

The reader 1s invited to find a proof for the truth of this
affirmation. What will happen if we start the enumeration in another
small square or in another direction: Will the sum of the numbers of

two small squares, which correspond under a rotation of 1809, always
continue to be equal to 1217




Will the beauty of the sand drawing under consideration also be
reflected in other ways in the enumeration of the small squares?

When we enumerate the small squares, we obtain a rectangle of
numbers. Will this numerical rectangle be interesting, that 1s, for
example, ‘magic’? A numerical rectangle 1s called ‘magic’ if, for all
rows, the sums of the numbers of their small squares are equal and 1f,
at the same time, for all columns, the sums of the numbers of their
small squares are equal too. Figure 1.7 displays the sums of the
numbers row by row. Only some of them are equal. Have we come to
a dead-end?

pertags | 58 a1 | 3371eg | 987t s | 826
‘v v BT 7 g [od [Ns | & | s 826
g | 2 650
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Figure 1.7

Let us consider a similar, smaller design (see Figure 1.8) and let
us count the smaller squares from the center outwards. Figure 1.9
shows the result. Calculating the sums of the numbers, row by row,
and, column by column (see Figure 1.10), we verify that the sums of
four rows are equal to 196
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Figure 1.10




We would like to see that the six sums are equal, but only four
are. Bad luck... The numerical rectangle 1s not ‘magic’..., or could 1t
sometimes be that

220=196=1727

Distinct numbers never can be really equal; at most they may be
equivalent or equal modulo m. This means that their difference is a
multiple of the natural number m.

For which values of m may 220 = 196 = 172 modulo m happen?

If 220 = 196 modulo m, then their difference 220-196, that 1s
24, has to be a multiple of m.

We would also like to see that the sums of the numbers 1n the
columns are equal:

203 =171 =123 =91.

As they are in fact not equal, we would prefer that they are equal
modulo the same number m. Therefore, 203-171, that 1s 32, has to be
a multiple of m. As both 32 and 24 are multiples of m, 32-24, that 1s, 8
also has to be a multiple of m. In this way we see that m may only be
8,4 or 2. Let us analyze the possibility m=8.

Instead of counting naturally the small squares through which the
line passes, that 1s, 1, 2, 3, 4, 5, ..., 48, let us enumerate them modulo
3:

1,2,3,4,5,6,7,0, 1,2, 3,4 5,6,7,0,..

Figure 1.11 shows the start of the enumeration modulo 8 and
Figure 1.12 the final result. We note that the numerical rectangle that
1s thus obtained 1s ‘magic’ modulo 8, as 28=20=36=4 modulo 8 and
11=27=19=3 modulo 8.

Figure 1.11
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Let us now attentively observe the distribution of the numbers 1,
2,3, 4,5, 6, 7, 0, throughout the rectangle. What happens to the
numbers of four small squares, which touch the same grid point?

We may see that, in most cases, four consecutive numbers appear
around a grid point:

* 3,4, 5, 6 around the second point of the first row of the grid;
* 2,3, 4, 5 around the third point of the first row of the grid, etc.

28
28

20

20

36

36

11 27 27 19 19 27 27 11
Figure 1.12

In only four cases does this not happen. For example, around the
first point of the first row, we find 0, 1, 2, 7 instead of 0, 1, 2, 3;
around the third point (on the left hand side) of the second row, we
find 0, 1, 6, 7 instead of 0, 1, 2, 3. What is to be done?

If only 6=2 and 7=3, then the situation would be ‘normalized’.
Counting modulo 4 or modulo 2, we have 6=2 and 7=3.

Figure 1.13




Let us now enumerate modulo 4 instead of modulo 8 the small
squares through which the curve passes successively. Figure 1.13
shows the beginning of the enumeration modulo 4 and Figure 1.14 the
conclusion:

Figure 1.14

Now we find the numbers 0, 1, 2, and 3 around all grid points; the
rectangle of the small squares remains ‘magic’. Moreover, we have
won new and beautiful surprises: the disposition of 0, 1, 2, 3 1s
alternately clockwise and anti-clockwise (see Figure 1.13); between
four neighboring grid points there are always four equal numbers (see
Figure 1.14 once again).
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Figure 1.15

Will the same happen with the larger ‘chased chicken’ sand
drawing in Figure 1.3, and with other regular and monolinear sand
drawings like that of the ‘lion’s stomach’ (see Figure 1.16)?
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For which drawings the same phenomenon 1s verified remains to
be seen. The reader i1s 1nvited to experiment and to find a general
answer.

Figure 1.16

In the following section a possible answer will be presented.

1.3 Some theorems about smooth and monolinear mirror line
designs

Introduction

A whole class of drawings to which the ‘chased chicken’ and
‘lion’s stomach” designs belong, which we met in the previous section,
satisfies a common construction principle. The curves involved may
be generated in the following way: each of them 1s the smooth version
of a closed polygonal path described by a light ray emitted from the
point A (0,1) (see Figure 1.17a). The light ray 1s reflected on the sides
of the circumscribed rectangle of the grid, and on its way through the
grid it encounters double-sided mirrors. These mirrors are placed
vertically in the center between two horizontal neighboring grid points
and horizontally in the center between two vertical neighboring grid
points. Figure 1.17 shows the generation of the ‘chased chicken’
drawing.

In the following we will define the designs that satisfy the
aforementioned construction principle and demonstrate a few theorems
which reveal some properties of this class of designs.

21
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Definitions

Consider a rectangular grid RG[m,n] with vertices (0,0),
(2m,0), (2m,2n) and (0,2n) and having as points (2s-1,2t-1), where s =
l,..m andt=1,..., n, and m and n two arbitrary natural numbers.

Figure 1.18 displays the example RG[5,3].

L » 9 » L
L » L » L
L » L » L
RG(5,3]
Figure 1.18

The intersection of RG[m,n] with the set of straight lines

y =+x+(2utl),

where u represents an arbitrary whole number, will be called a
diagonal design D|m, n].
Figure 1.19 shows the examples D[5,3] and D[6,3].

O30 I OO
000000 % 0?‘?0 &%

00,
X%

m

A diagonal design may be considered as the union of the
“polygonal mirror lines” which are traced by light rays emitted from
the points (2s-1,0) in the direction of (2s,1), and which are reflected on
the sides of the rectangle (s=1, 2, ..., m).

We call a diagonal design p-linear, if 1t 1s composed of p distinct
closed “polygonal mirror lines”.

For example, D[6,3] 1s 3-linear and DJ[5,3] 1s monolinear (1-
linear).

Figure 1.19
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When horizontal and vertical double-sided mirrors of unit length
are placed in a diagonal design in the midpoints between horizontal
and vertical neighboring grid points, we call it a polygonal mirror
lines design.

A polygonal mirror lines design may be considered as the union
of the polygonal paths described by light rays emitted from the points
(2s-1,2t) 1n the direction of (2s,2t+1), and which are reflected on the
mirrors and the sides of the rectangle (s =1,..., m; t=1,.., n-1). We
call a polygonal mirror lines design p-linear, if it consists of p distinct
closed polygonal paths.

A polygonal mirror lines design will be called regular when all
mirrors between horizontal neighboring points are always in the
vertical position and when, at the same time, all mirrors between
vertical neighboring points are always in the horizontal position:

® ®
always e ® or and never @ —— @ nor I
° ®

When all polygonal elements of a polygonal mirror lines design
are transformed into smooth curve elements, in agreement with the
transformation rules represented in Figure 1.20, we will call the result
a smooth mirror lines design.

Y NO RO I WO

Transformation rules
Figure 1.20

Inversely, we may consider a polygonal mirror lines design as the
‘rectification’ of a smooth mirror lines design. Figure 1.21 presents
examples.
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¢: regular, monolinear d: non-regular, monolinear
Figure 1.21

Consider now the unit squares of the imitial rectangular grid
RG[m,n], that 1s, the squares whose vertices have the coordinates
(p.q), (pt1l.q), (p*+1.q+1) and (p.q+1), where p=0,1,..., 2Zm-1 and q =
0,1,..., 2n-1. Each of these unit squares has one unique grid point as
one of its four vertices. The unit squares may be enumerated, as
Figure 1.22 1llustrates, in dependence of their position relative to the
corresponding grid point (2s-1,2t-1). This enumeration will be called
Q-enumeration (modulo 4).

S
odd even
odd 312 2-3
0 1 1
t
0 1 1
even . .
2 2

Q-enumeration (modulo 4)
Figure 1.22




Figure 1.23 shows the Q-enumeration of the rectangular grids
R[4,3] and R[5,3]. We note that the same number 1s attributed — as a
consequence of the definition — to the four unit squares, which belong

8 BaRBaRmaa
0 ol1}1]ojo]1!
°
3 2]213]3]2
3
0
Q

to the same square of neighboring grid points.

-enumeration of RG[4,3] and RG[5,3]
Figure 1.23

Consider a monolinear, smooth mirror lines design, or, in brief, a
(rectangle-filling) mirror curve. Let us assume that the closed curve 1s
gone through in the following way: one starts in the unit square [Ag)]

with vertices (1,0), (2,0), (0,1) and (1,1). Let Ag be the g" attained

unit square through which the curve goes. As the mirror lines design
1s monolinear, the curve passes through all unit squares of the
rectangular grid. This makes 1t possible to introduce a second
enumeration of the unit squares: the p-number of the unit square Ag 15

defined by g modulo 4, that 1s
P(Ag) =g mod 4.

Figure 1.24 gives an example.

Now we will demonstrate the (surprising) theorem that states that
— 1n the case of monolinear, regular and smooth mirror lines designs
— the two enumerations are equal, that 1s

Q(Ag) =P(A,) for g=0,1,..4mn-1

To facilitate the demonstration, we first prove the following
auxiliary theorem:

Theorem 1: For monolinear, regular and smooth mirror lines
designs, the following equality Q{Ag+z} = Q(Ag} +2

(mod 4), holds for g=0,1,..., 4mn-1.

26
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Example of a P-enumeration
Figure 1.24

Proof:

Consider three unit squares through which the curve successively
passes. When going through the three unit squares, the curve may
encounter O, 1, 2 or 3 murrors. In this way, we may distinguish five
essentially different situations (see Figure 1.25). In each situation we
have that the first {Ag} and the third (Angz) unit square, through

which the curve passes, belong to diagonally opposed grid point
squares (see Figure 1.20).
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Figure 1.25
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In agreement with the definition of the Q-enumeration, it follows
immediately that

Q(Ag19) = Q(A,) +2 (mod 4),
as we wished to prove.

Theorem 2: For monolinear, regular and smooth mirror lines designs
the following equality Q(Ag) - P(Ag} holds for g = 0,

l..... 4mn-1.
Proof:

In accordance with the definitions of the P-enumeration and of
the Q-enumeration we have:

(1)  P(Ay))=0=Q(A,) and
(2)  P(A)=1=Q(A)).
28




For g=2,3, ..., 4mn-1, we have
P(Ag) =g (mod 4) and

P{Ag+2) = o+2 (mod 4).
Therefore,
(3) P(Agﬂ) = P(Ag) +2 (mod 4).

In agreement with (1), (2) and (3) and theorem 1, it follows that
Q(Ag) = P(Ag) for g=0, 1,..., 4mn-1,

as we wished to prove.

Corollary 1: Two neighboring parallel line segments of a
monolinear, regular and smooth mirror lines design are
always traversed in opposite directions.

Proof:

If the straight line segment 1 1s traversed in the direction a*b ,
where a*b = 0%1, 1*2, 2*%3 or 3*0 (mod 4), the line segment II 1s also
traversed in the direction a*b, that 1s, in the opposite direction (see
Figure 1.27a).

If the curved line segment III (see Figure 1.27b) 1s traversed in
the direction a*c (upwards), this implies, by consequence of the
definition of the Q-enumeration, that a=3 and ¢=0 or a=1 and ¢=2. In
the first case we obtain b=2 and d=1, that is, the curved line segment
IV 1s traversed in the direction d*b (downwards). In the second case
b=0 and d=3 hold and the curved line segment IV is traversed in the
direction d*b (downwards). In other words, in both cases the
neighboring curved line segments are traversed in opposite directions.

I Il I IV

L L
c|lolal|a

r:rr:rln.n.
@ ®

Figure 1.27
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Corollary 2: Two crossing segments of a monolinear, regular and
smooth mirror lines design are always traversed in the
same direction (that 1s, both upwards or both
downwards).

Figure 1.28
Proof:

If the segment I 1s traversed in the direction a*b, the segment II
can only be traversed in the same direction (see Figure 1.28). In the
case of b*a, the reasoning 1s the same.

Theorem 3: Take a monolinear, regular and smooth mirror lines
design. If a crossing between two horizontal
neighboring gnid points 1s vertically eliminated (see
Figure 1.29), a 2-linear mirror lines design 1s obtained.

f S e’ ‘\
] | ]
| ® )AL O |
i I
Y F 4 “» Y J
Situation before the Situation after the
elimination elimination

Vertical elimination of a crossing

between two horizontal neighboring grid points
Figure 1.29
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Proof:

If one starts the course of the monolinear mirror curve from the
crossing (A) to be eliminated onwards, climbing to the right (see
Figure 1.29), then, continuing the course, one returns to A, In
agreement with Corollary 2, from below on the right hand side; passes
then through A and returns finally from below on the left hand side to
A. This implies, if the curve 1s ‘cut’ in A, that two closed lines are
obtained.

Figure 1.30 presents examples.

Figure 1.30

On symmetry grounds we have:

Corollary 3: Take a monolinear, regular and smooth mirror lines
design. If a crossing between two vertical neighboring
grid points 1s horizontally eliminated (see Figure 1.31),
a 2-linear mirror lines design 1s obtained.

' &
; N

Situation before the elimination Situation after the elimination

Horizontal elimination of a crossing
between two vertical neighboring grid points
Figure 1.31
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Theorem 4: Consider a monolinear, regular and smooth mirror lines
design. If a crossing between two horizontal
neighboring grid points 1s horizontally eliminated, the
mirror lines design thus obtained also 1s monolinear.

T~ "N 25N "N
’ 1 ’ W \
[ \ 1 | |
| | I ® A O |
\ 1 /\ !
\ﬁ_## #-#’ lt_# *\‘_#J’

a: Situation before the elimimnation  b: Situation after the elimination

Horizontal elimination of a crossing

between two horizontal neighboring grid points
Figure 1.32

Proof:

Let us observe the given mirror lines design and traverse it from
the crossing (A) to be eliminated on, upwards to the right (see Figure
1.32a).

Once more we have, in agreement with Corollary 2, that one
returns to A from below on the right hand side.

Conversely, if we traverse the mirror lines design, starting in A,
gomng downwards to the left, one returns to A once again from below
on the left hand side, in agreement with Corollary 2.

Let us now eliminate horizontally the crossing A and traverse the
mirror lines design from X (see Figure 1.32b) onwards in the indicated
direction (-->). As the mitial mirror lines design was monolinear, at a
given moment one traverses the arc below A, from the right to the left.
The monolinearity of the initial mirror lines design implies, taking into
account Corollary 2, that one finally returns from the left to the start
point X, having gone through the whole mirror lines design. Thus the
proof of the theorem has been concluded.

For reasons of symmetry we have:

Corollary 4. Consider a monolinear, regular and smooth mirror lines
design. If a crossing between two vertical neighboring
orid points 1s vertically eliminated, the mirror lines
design thus obtained 1s also monolinear.
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Figure 1.33 gives examples.
It should be noted that the resulting new mirror lines designs are
not regular and, therefore, the same theorem cannot be applied to

them.

Figure 1.33

1.4 Enumeration modulo 2 and Lunda-designs

Theorem 2 gives information about the distribution of the 0’s,
1’s, 2’s and 3’s when one enumerates modulo 4 the unit squares
through which a regular (monolinear) mirror curve successively
passes. On the basis of this distribution we may deduce the
distribution of 0’s and 1’s when we count them modulo 2 instead of

modulo 4. Figure 1.34 gives an example.

Figure 1.34

Coloring the unit squares with number 1 black, and the ones with
number 0 white, black-and-white designs are obtained of the type
illustrated in Figure 1.35, which corresponds to the example of the

previous figure.
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Figure 1.35

Non-regular mirror curves generate other distributions of 0’s, 1°s,
2’s and 3’s and other black-and-white designs. Figure 1.36 presents
examples of dimensions 4 by 3:
1. Position of the mirrors;
2. Corresponding mirror curves;
3. Corresponding 0, 1, 2 and 3 designs;
4. Corresponding black-and-white designs.

As this type of black-and-white design was discovered in the
context of analyzing sand drawings from the Cokwe, who
predominantly inhabit the northeastern part of Angola, a region called
Lunda, I have given them the name of Lunda-designs. For the first
time I presented Lunda-designs in a paper published in 1990.
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Figure 1.36 (first part)
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Chapter 2

ON LUNDA-DESIGNS AND SOME OF THEIR
SYMMETRIES 1

2.1 Mirror designs and mirror curves

When analyzing sand drawings from the Cokwe (Angola) [cf.
Gerdes, 1993-94] and threshold designs from the Tamil (South India)
[cf. Gerdes, 1989; 1993-94, chap. 11; 1995], I found that several of
them (see the two examples in Figure 2.1) might be generated in the
following way.

Cokwe sand drawing Tamil threshold design
a b
Figure 2.1

Consider a rectangular grid RG[m,n] with vertices (0,0), (2m.0),
(2m,2n), and (0,2n) and having as points (2s-1, 2t-1), where s = 1,...,m,
and t = 1,....n, and m and n two arbitrary natural numbers. Figure 2.2
displays RGJ[6,5] and RG[5,5].

1 Published in the electronic journal: Visual Mathematics, Belgrade,
Vol. 1, No. 1, 1999
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Figure 2.2

A curve like that shown in Figure 2.1 1s the smooth version of a
closed polygonal path described by a light ray emitted from the point

(1,0) at an angle of 45° to the sides of the rectangular grid RG[m,n]
(see the example in Figure 2.3).

L] L L] » » L]
f ] ® ® L
(1,0

Emuission of a light ray from the point (1,0)
Figure 2.3

The ray 1s reflected on the sides of the rectangle and on its way
through the grid it encounters double-sided mirrors, which are placed
horizontally or wvertically, midway, between two neighboring gnd
points (see Figure 2.4).

Possible positions of mirrors
Figure 2.4
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Figure 2.5 shows the position of the mirrors in order to generate
the two curves of Figure 2.1.

Mirror designs generating the curves of Figure 2.1
Figure 2.5

Both curves are rectangle-filling in the sense that they ‘embrace’
all grid points. Such curves we will call (rectangle-filling) mirror
curves. The rectangular grids together with the mirrors, which
generate the curves will be called mirror designs. Figure 2.6a

displays the mirror design that leads to the Celtic knot design in Figure
2.6b (cf. Gerdes, 1993-94, chap. 12).

a b

Example of a Celtic knot design as a mirror curve
Figure 2.6

Gerdes (cf. 1990, 1993-94, chap. 4-8) analyzes some properties
and classes of mirror curves and Jablan (1995) establishes links
between mirror curves and the theory of cellular automata, Polya’s
enumeration theory, combinatorial geometry, topology, and knot
theory.
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(grid points unmarked) (border rectangle unmarked)
e f
Example of a black-and-white coloring
Figure 2.7

2.2 The discovery of Lunda-designs

Let us now consider a rectangle-filling mirror curve. It passes
precisely once through each of the unit squares of the rectangular grid.
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This enables us to enumerate the unit squares through which the curve
successively passes, 1, 2, 3, 4,...4mn. Enumerating them modulo 2,
ie. 1,0, 1,0, ..., 0 a (1,0)-matrix is obtained, or, equivalently, by
coloring the successive unit squares alternately black (= 1) and white
(= 0), a black-and-white design is produced. Figure 2.7 presents an
example of the generation of such a black-and-white design.

As this type of black-and-white design was discovered in the
context of analyzing sand drawings from the Cokwe, who
predominantly inhabit the northeastern part of Angola, a region called
Lunda, I have given them the name of Lunda-designs.

2.3 Examples

Figure 2.8b displays a sequence of nine 10x11 Lunda-designs
generated by introducing, step-by-step, more horizontal mirrors along
the principal diagonal (Figure 2.8a). Figure 2.9b shows what happens
if we introduce the mirrors in pairs (Figure 2.9a). This time, the
resulting Lunda-designs have a two-color symmetry: a half-turn about
the centre interchanges white and black. This also happens with the
Lunda-designs in Figure 2.10.

Figure 2.11a shows a sequence of three mirror designs, of which
the second and third generate the same Lunda-design (Figure 2.11D).
These Lunda-designs admit vertical and horizontal reflections. The
first preserves the colors, whereas the second reverses black and white.

Figure 2.12a displays three mirrors designs with two-fold
rotational symmetry. The Lunda-design generated by the first 1s also
invariant under a half-turn about its centre. In the second and third
cases, a half-turn around the respective centers reverses the colors.

The symmetrical mirror designs in Figure 2.13a generate Lunda-
designs with horizontal and vertical reflections, which interchange
black and white.

(Many) Lunda-designs seem to me — and to colleagues and
students to whom I have shown them — aesthetically appealing.
Where do possible reasons for this lie? What do all these Lunda-
designs have in common? Which characteristics? Do they possess
specific symmetries?
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2.4 General symmetry properties

Searching for the common characteristics of Lunda-designs (of
dimensions mxn), the following symmetry properties were observed
and proven:

(1) In each row there are as many black as white unit squares;

(11) In each column there are as many black as white unit squares;

(111) Of the two border unit squares of any grid point in the first or last
row, or in the first or last column, one 1s always white and the
other black (see Figure 2.14);

oo PROAS

Possible border situations
Figure 2.14

(1tv) Of the four umit squares between two arbitrary (vertical or
horizontal) neighboring grid points, two are always black and two
are white (see Figure 2.15).

FHEEBE
fet w3 OF 80 wat O

Possible situations between vertical and
horizontal neighboring grid points
Figure 2.15

s

Properties (1) and (1) guarantee a global equilibrium between
black and white unit squares for each row and column. Properties (111)
and (1v) guarantee more local equilibriums.

From (1) 1t follows that the number of black unit squares of any
row 1s equal to m, and from (11) that the number of black unit squares
of any column 1s equal to n.

Inversely, the following theorem can be proven:

* any rectangular black-and-white design that satisfies the
properties (1), (11), (111), and (1v) 1s a Lunda-design.




In other words, for any rectangular black-and-white design that
satisfies the properties (1), (11), (111), and (1v), there exists a (rectangle-
filling) mirror curve that produces 1t in the discussed sense (cf. Figure
2.7). Moreover, in each case, such a mirror curve may be constructed.

The characteristics (1), (11), (111), and (1v) may be used to define
Lunda-designs of dimensions mxn (we may abbreviate: mxn Lunda-
designs). In fact, it may be proven that the characteristics (111) and (1v)
are sufficient for this definition, as they imply (1) and (1) (see
Appendix 1).

2.5 Special classes of Lunda-designs

Especially attractive are Lunda-designs, which display extra

P

Figure 2.16

Figure 2.16 presents the six possible 3x3 Lunda-designs [being
white (= 0) the color of the first unit square with vertices (0,0), (1,0),
(1,1), and (0,1)] that admit reflections in the diagonals that preserve
the colors and vertical and horizontal reflections interchanging black
and white. By consequence, a half-turn about the centre preserves the
colors and a quarter-turn reverses the colors. In other words, these
finite designs are of the type d4’ (for this notation, see e.g. Washburn
& Crowe, p. 68).

Figure 2.17 displays the 4x4 Lunda-designs and Figure 2.18 the
5x5 Lunda-designs, which have the same symmetries. Figure 2.19
presents examples of mirror designs, which generate such 5x5 Lunda-
designs (the numbers indicate the corresponding Lunda-designs in

Figure 2.18).
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Figure 2.18 (Final part)
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Figure 2.19 (Second part)

When we join four Lunda-designs of the type d4°, a new Lunda-
design of the same type 1s obtained (see the example 1n Figure 2.20).

Figure 2.20

Figure 2.21 displays examples of 5x5 Lunda-designs — together
with corresponding generating mirror designs — , which, although
they do not have symmetry axes, do possess the property that a
quarter-turn about the respective center reverses the colors, and
consequently a half-turn preserves the colors (type c4’).
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Figure 2.22 presents examples of 9x9 Lunda-designs of the type
d4’ together with corresponding generating mirror designs.
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Figure 2.23 presents examples of 7x7 Lunda-designs of the type
c4’. Examples of 9x9 and 13x13 Lunda-designs of the same type ¢4’
are displayed in Figures 2.24 and 2.25. Two examples of 9x9 Lunda-
designs, which admit reflections in their diagonals are given in Figure
2.26.
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Figure 2.25

63



al
- L ] ] [ ] - L] ] [ ] ]
— I
W — Y — l » I [ L ] ] [ ] ]
[ ] T [ ] 1 . [ ] . [ ] ]
| —
- I L I — =0 L] ] - »
- l ] [ ] - L] ] . ]

Figure 2.26
2.6 Square Lunda-designs and fractals

Square Lunda-designs may be used to build up fractals, that 1s
geometrical figures with a built in self-similarity (see e.g. Lauwerier).
Figure 2.27 shows the first three phases of building up a fractal on the
base of a 2x2 Lunda-design of the type d4’. The fractal itself admits
only two reflections. Figure 2.28 presents the first two phases of the
construction of a fractal on the base of a 4x4 Lunda-design.
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2.7 Generalization of Lunda-designs

As Lunda-designs may be considered as matrices, it 1s quite
natural to define addition of Lunda-designs in terms of matrix
addition: the sum of two (or more) matrices (of the same dimensions)
1s the matrix in which the elements are obtained by adding
corresponding elements (see the example in Figure 2.29).
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Figure 2.29

The sum of &£ mxn Lunda-designs may be called an mxn Lunda-

k-design. The Lunda-k-designs inherit the following symmetry
properties:

(1)
(11)
(iii)

(1v)

The sum of the elements in any row 1s equal to kmt;

The sum of the elements 1n any column 1s equal to k#n;

The sum of the integers 1n two border unit squares of any gnd
point 1n the first or last rows or columns 1s equal to k;

The sum of the integers in the four unit squares between two
arbitrary (vertical or horizontal) neighbor grid points i1s always

2k |

LIf we define a Lunda-design not as a (0,1) - matrix, but as a (-1,1) -
matrix, these properties assume the following expressions:

(1)
(11)
(i)

(1v)

The sum of the elements in any row 1s equal to 0;

The sum of the elements 1n any column 1s equal to O;

The sum of the integers in two border unit squares of any grid
point in the first or last rows or columns 1s equal to 0;

The sum of the integers in the four unit squares between two
arbitrary (vertical or horizontal) neighboring grid points 1s always
0.
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Once again, properties (1) and (11) guarantee a global equilibrium
for each row and column. Properties (111) and (1v) guarantee more
local equilibriums.

The characteristics (1), (i1), (111), and (1v) may be used to define
Lunda-k-designs of dimensions mxn. The characteristics (i11) and (iv)
are sufficient for this definition, as they imply (1) and (11).
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Figure 2.30 (first part)




Figure 2.30 (second part)

Figure 2.30 displays the 3x3 Lunda-3-designs of the type d4’,
with white ( = 0) being the color of the first unit square [with vertices
(0,0), (1,0), (1,1), and (0,1)]. Figure 2.31 shows an example of an 8x8
Lunda-4-design. Figure 2.32 displays examples of a 4x4 Lunda-5-
design, an 8x4 Lunda-5-design, and a 5x3 Lunda-4-design. This time
the color chosen for the first unit square 1s different from white.
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Figure 2.31
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Figure 2.32
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2.8 Hexagonal Lunda-designs

Another way to expand the concept of Lunda-design 1s to start
with hexagonal grids instead of rectangular ones. Figure 2.33 displays

Sl
AR
G L

Figure 2.33

Each grid point is surrounded by six unit triangles. Each border
orid point has three unit triangles that touch the border (see Figure
2.34a), and between two arbitrary neighboring grid points, there 1s
always a hexagon composed of six unit triangles (see Figure 2.34b).

a b
Figure 2.34

Suppose that to each unit triangle of a hexagonal grid we assign
one of three colors (e.g. white, grey, and black). Then we obtain a

three-colored design. If such a design satisfies the following two
conditions:

(1) To the three border unit triangles of any border grid point
different colors are assigned;

(11) Of the six unit triangles between two arbitrary neighboring grid
points, there are two of each color,

we call it a hexagonal Lunda-design.

Properties (1) and (1) guarantee local equilibrium between the
three colors. Figure 2.35b shows an example of a hexagonal Lunda-
design,
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Figure 2.35
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Figure 2.36

Figure 2.36 presents seven hexagonal Lunda-designs that have a
three-color rotational symmetry: a 609 rotation about the centre 1s

consistent with color. A clockwise rotation by 609 moves all the white
to coincide with all the grey, moves grey to black, and black to white.
In other words, the three colors occupy equivalent parts of the design.
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In the case of the four hexagonal Lunda-designs in Figure 2.37, a

clockwise rotation by 120° moves white to grey, grey to black, and
black to white.

Figure 2.37
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Chapter 3
ON MIRROR CURVES AND LUNDA-DESIGNS 1

Abstract

Some aspects of a class of curves that may be considered as
generated by mirror designs are presented, with examples from several
cultures. These mirror curves generate in turn, interesting black-and-
white designs called Lunda-designs. The paper presents examples of
these, discusses some of their properties and suggests generalizations
of the concept.

3.1 Mirror designs and mirror curves

Storytellers among the Cokwe and neighboring peoples in eastern
Angola and northwestern Zambia were used to 1llustrate their fables
with standardized drawings in the sand. Such a drawing consists of a
line figure that embraces all the points of an orthogonal grid of
equidistant points. When analyzing this tradition, I found that several

sand drawings (see the examples in Figure 3.1) may be generated in
the following way [Gerdes, 1993, chap. 6].

Examples of Cokwe sand drawings
Figure 3.1

l Published in: Computers and Graphics, An international journal of
systems & applications in computer graphics, Oxford, 1997, Vol. 21,
N°3,371-378.
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Consider a rectangular grid RG[m,n] with vertices (0,0), (2m,0),
(2m.2n), and (0,2n) and having as points (2s-1, 2t-1), where s= 1,.._,
and t= 1,...,n, and m and »n are two arbitrary natural numbers (see the
examples in Figure 3.2).

. » . . . .
» » » » 'Y 'Y 'Y 'Y 'Y ] [ [ L L L
RG[4,3] RGI[5,4] RG[6,5]
a b C
Rectangular grids
Figure 3.2

A curve like that shown 1n Figure 3.1a 1s the smooth version of a
closed polygonal path described by a light ray emitted from the point
(1,0), making an angle of 45 degrees with the sides of the rectangular
orid RG[m,n]. The ray is reflected on the sides of the rectangle and on
its way through the grid 1t may encounter double-sided mirrors, which
are placed horizontally or wvertically in the centre between two
(horizontal or vertical) neighboring grid points. Figure 3.3 shows the
position of the mirrors in order to generate the curves of Figure 3.1.
These curves are rectangle-filling in the sense that they ‘embrace’ all
the grid points. Such curves we will call (rectangle-filling) mirror
curves. The rectangular grids together with the mirrors, which
generate the curves will be called mirror designs.

] ] ] ] [ ] [ ]

L ] L ] L ] L ] [ ] L I L L I ] ] I L]

. . | . . ° T ° T ° . . . . . .
. . . . ° T ° T ° . |T . |T . | .
. . I . . * T . T * . . T ® T .

a b C
Mirror designs
Figure 3.3
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Mirror curves may also be found 1n other cultures. For instance,
Figure 3.4al, a2 and a3 display the mirror designs that lead to an
ancient Egyptian scarab design (Figure 3.4bl), to the threshold design
from the Tamil (Southern India) in Figure 3.4b2 and to the mosque
decoration in Figure 3.4b3 (cf. [Gerdes, 1989], [Gerdes, 1993, chap. 9,
11]; [Gerdes, 1995]; [Hessemer, pl.46]).

al

Tamil design
a2 b2

ele oo oo oo () (X (X)) X))
e oo o]e o]e o (XD (X (X (X2

Mosque ornamentation in Cairo
a3 b3
Examples of mirror curves in various cultures
Figure 3.4

Gerdes (1990; 1993, chap. 4-8) and Jablan (1995, 1996) analyze
several properties and classes of mirror curves. Jablan also establishes
links with the theory of cellular automata, Polya’s enumeration theory,
combinatorial geometry, topology, and knot theory.
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3.2 Regular mirror curves

The mirror curves in Figures 3.1 and 3.4 are regular in the sense
that in the corresponding mirror designs the horizontal mirrors are
always 1n the centre between vertically neighboring grid points, and
the vertical mirrors are always in the centre between horizontal
neighboring grid points.  Regular mirror curves possess some
interesting properties, such as the following.

Example of enumerating the unit squares modulo 4
Figure 3.5

Consider a rectangle-filling, regular mirror curve. It passes
precisely once through each of the unit squares of the rectangular grid.
This enables us to enumerate the unit squares through which the curve
successively passes 1, 2, 3, 4,....4mn. Enumerating them modulo 4,
re. 1, 2,3,0, 1,2, 3,0, ...a(l, 2, 3, 0)-matrix 1s obtained. When we

1l



start the enumeration with the unit square with vertices (0,0), (1,0),
(1,1), and (0,1), we find that the four umt squares around any grid
point are always numbered clockwise (negative rotation) or counter-
clockwise (positive rotation) 1, 2, 3, 0. Moreover, positive and
negative rotations alternate like the checkers of a chessboard (see the
example in Figure 3.5). When we count the unit squares modulo 2, 1.e.
1,0, 1, 0, 1, 0, etc. , a (1,0)-matrix 1s obtained, or, similarly, by
coloring the successive unit squares alternately black (= 1) and white
(= 0), a black-and-white design 1s produced. Figure 3.6 presents the
(1,0)-matrix and the black-and-white design, which correspond to the
mirror curve in Figure 3.5a (For proofs of these theorems, see Gerdes,

1993, chap. 6; cf. chap. 1).

Black-and-white design

a (with the border rectangle and the grid
points unmarked)
b
Corresponding (0,1)-matrix and black-and-white-design
Figure 3.6

a b C
Ancient Egyptian scarab ornamentation (b) with corresponding mirror
design (a) and black-and-white design (c)
Figure 3.7
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3.3 Non-regular mirror curves

The mirror curves in Figure 3.7b and 3.8b which represent an
ancient Egyptian scarab ornamentation (grid points added, cf. [Gerdes,
1993, chap. 9] and [Petrie, 1934, pl.IX, n°178]) and the structure of
two Celtic knot designs [Bain, p.138, 45] are not regular: in the first
case there exists one horizontal mirror between two horizontal
neighboring grid points (see Figure 3.7a); in the second case there
exist two vertical mirrors between vertically neighboring grid points;
and in the third case there are both horizontal mirrors between
horizontally neighboring points, and wvertical mirrors between
vertically neighboring points (see Figure 3.8a). Figure 3.8c shows the
black-and-white designs these mirror curves produce when we color
the successive unit squares through which the curves successively pass
alternately black and white (if we start the coloring at any other unit
square, the final design 1s either the same or 1ts negative).

[ ] T [ ] [ ] i [ ]
[ ] L] [ ] [ ] ] L L] L ] [ ] [ ] [ ]
| I—l—I—I—!—I
- - I |
[ ] [ ] [ ] [ ] ] L L] ] [ ] [ ] [ ]
| L ] l L L ] ! [ ]
al

cl

Two Celtic knot designs (b) with corresponding mirror designs (a) and
black-and-white designs (c)
Figure 3.8
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Figures 3.9 and 3.10 present further examples of non-regular
mirror designs, and the mirror curves and corresponding black-and-
white designs they generate. Knowing only the position of the mirrors
it 1s difficult to conjecture how the corresponding black-and-white

design will look.
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Examples of non-regular mirror designs and of the mirror curves and
Lunda-designs they generate

Figure 3.9
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curves and Lunda-designs they generate
Figure 3.10

Further examples of non-regular mirror designs and of the mirror
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As this type of black-and-white design was discovered in the
context of analyzing sand drawings from the Cokwe, who
predominantly inhabit the northeastern part of Angola, a region called
Lunda, we have given them the name of Lunda-designs. (Many)
Lunda-designs seem to me — and to colleagues and students to whom
[ have shown them — aesthetically appealing. Where do possible
reasons for this lie? What characteristics do Lunda-designs have in
common?

3.4 Properties of Lunda-designs

Searching for the common characteristics of Lunda-designs (of
dimensions mxn), the following symmetry properties were observed
and proven [see Appendix 1]:

(1) In each row there are as many black as white unit squares;

(11) In each column there are as many black as white unit squares;

(11) Of the two border unit squares of any grid point in the first or
last row, or in the first or last column, one 1s always white and
the other black (see Figure 3.11);

R e sl

Possible border situations
Figure 3.11

(1v) Of the four unit squares between two arbitrary (vertical or
horizontal) neighboring grid points, two are always black and
two are white (see Figure 3.12).

="l ..l SNE
i o8 R W

Possible situations between vertical and horizontal
neighboring grid points
Figure 3.12




Properties (1) and (11) guarantee a global equilibrium between
black and white unit squares for each row and column. Properties (111)
and (1v) guarantee more local equilibriums.

From (1) 1t follows that the number of black unit squares of any
row 1s equal to m, and from (11) that the number of black unit squares
of any column 1s equal to ».

Conversely, the following theorem can be proved [see Appendix

1]
* any rectangular black-and-white design that satisfies the
properties (1), (11), (111), and (1v) 1s a Lunda-design.

In other words, for any rectangular black-and-white design that
satisfies the properties (1), (11), (111), and (1v), there exists a (rectangle-
filling) mirror curve that produces it in the discussed sense. Moreover,
in each case, such a mirror curve may be constructed.

The characteristics (1), (11), (111), and (1v) may be used to define
Lunda-designs of dimensions mxn (in brief: mxn Lunda-designs). In
fact, it may be proven that the characteristics (111) and (1v) are
sufficient for this definition, as they imply (1) and (11).
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1x1, 2x1, 3x1 and 4x1 Lunda-designs
Figure 3.13

3.5 Classes of Lunda-designs

Figure 3.13 shows all distinct 1x1, 2x1, 3x1 and 4x1 Lunda-
designs. We do not include designs that may be obtained from the
ones presented by reflection, rotation, or by interchanging black and
white. It 1s interesting to note that the Ix1 Lunda-design symbolizes
wisdom among the Akan populations in Ghana and Cote d’Ivoire
[Niangoran-Bouah, p. 210].
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Figure 3.14 displays the 5 distinct 2x2 Lunda-designs and Figure
3.15 the 3x2 Lunda-designs.

) ke B
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2x2 Lunda-designs
Figure 3.14
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3x2 Lunda-designs
Figure 3.15
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Examples of symmetrical 6x6 Lunda-designs
Figure 3.16

Particularly visually attractive are Lunda-designs, which display
extra symmetries. Figure 3.16 presents examples of 6x6 Lunda-
designs, which admit reflections in the diagonals that preserve the
colors, and vertical and horizontal reflections interchanging black and
white. Figure 3.17a2 presents a 11x11 Lunda-design with the same
symmetries as the examples in Figure 3.16; Figure 3.17b2 displays a
11x11 Lunda-design that, although it does not have symmetry axes,
possesses the property that a quarter-turn about the respective centre
reverses the colors, and consequently a half-turn preserves the colors.
Figures 3.17al and bl show mirror designs, which generate the
respective Lunda-designs.
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Examples of symmetrical 11x11 Lunda-designs
Figure 3.17

3.6 Generalizations

The concept of Lunda-design may be generalized or extended 1n
various ways. In chapter 2 we showed, for instance, that it 1s possible
to build up (multicolor) hexagonal Lunda-designs by starting with
triangular grids. Here we will introduce Lunda-k-designs and circular
and polyominal Lunda-designs.

By



Lunda-k-designs

As Lunda-designs may be considered as matrices, it 1s quite
natural to define addition of Lunda-designs in terms of matrix
addition. The sum of & mxn Lunda-designs may be called a mxn
Lunda-k-design. The Lunda-k-designs inherit the following symmetry
properties:

(1) The sum of the elements in any row 1s equal to km;

(1) The sum of the elements in any column is equal to kn;

(111) The sum of the integers in the two border unit squares of any
orid point in the first or last rows or columns 1s equal to k;

(1iv) The sum of the integers in the four unit squares between two

arbitrary (vertical or horizontal) neighbor grid points 1s always
2k.

H
v d
=0 -1 ) H-3 W=
Examples of symmetrical Lunda-4-designs
Figure 3.18
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The characteristics (111) and (1v) imply (1) and (i1), so they may be
used to define mxn Lunda-k-design. Figure 3.18 displays examples of
Lunda-4-designs.

c
Example of the transformation of a rectangular Lunda-design
Figure 3.19

Circular Lunda-designs

Any Lunda-design may be topologically transformed as in the
example shown in Figure 3.19. Property (111) guarantees that, if one
now joins the straight sides (see Figure 3.20), property (1v) 1s still
valid. This leads us to the conception of circular Lunda-designs.
Figure 3.21 presents examples of symmetrical 5x5 Lunda-designs
together with the circular Lunda-designs they generate.
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Circular Lunda-design corresponding
to the rectangular Lunda-design in Figure 3.19
Figure 3.20

If we curve any Lunda-design in space and join two opposite
sides, we obtain a black-and-white cylinder. By curving the cylinder
and joining 1ts opposite circles, we transform 1t into a black and white
torus. This leads to the conception of cylindrical and torus Lunda-
designs.

Polyominal Lunda-designs

In various cultures and historical periods there appear figures that
may be considered as mirror curves, if we admit polyominal borders
instead of only rectangular borders. A polyomino i1s a simply
connected set of equal-sized squares. For instance, Figure 3.22b
shows the polyomino with grid points that leads to the mirror curve
(there are no internal mirrors) in Figure 3.22a. This mirror curve
appears among the Cokwe in Angola, in Japan as a crest design
[Adachi, p.95], in China as a lattice design [Dye, p. 99], among the
Tamil in Southern India [Layard, p. 137] and also in Bhutan as a good
luck symbol (W. Gibbs, personal communication, 1990). Figure 3.22d
displays the Lunda-design generated by the curve.
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Examples of symmetrical 5x5 Lunda-designs together

with the circular Lunda-designs they generate
Figure 3.21
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Example of the generation of a polyominal Lunda-design
Figure 3.22

Figure 3.23 displays an ancient Egyptian scarab decoration
|Petrie, 1934, pl.VII, n° 220]; the polyomino in which it 1s inscribed;
and the Lunda-design i1t generates. Figure 3.24 and 3.25 do the same
for a Celtic knot design [Jones, pl.LXIV] and for another Tamil
threshold design [Layard, p.137]. In the last case the artist also drew
the polyominal border. The mirror curves in Figures 3.22, 3.23, 3.24,
and 3.25 may be classified as regular in the above-discussed sense.

O 4
ogo EERERE
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C d

Polyominal Lunda-design generated by an

ancient Egyptian scarab decoration
Figure 3.23

a b

Polyominal Lunda-design generated by a Celtic knot design
Figure 3.24
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Polyominal Lunda-design generated by a Tamil threshold design
Figure 3.25

Figure 3.26a shows a Japanese crest design [Adachi, p.4; gnd
points added]. This time the mirror curve 1s not regular, as there are
horizontal mirrors between horizontal neighboring grid points (see
Figure 3.26b). By coloring the unit squares (see Figure 3.26¢) through
which the curve successively passes alternately black and white, the
Lunda-design in Figure 3.26d 1s obtained. This time the curve does
not pass through the central square. In other words we constructed a
Lunda-design on a polyomino with a hole. A similar, though more
complicated situation (see Figure 3.27) occurs in the case of an ancient
Mesopotamian design (about 2800 B.C., cf. [Petrie, 1930, pl. XLI]J;
[Gerdes, 1993, chap.10]). In fact the curve does not fill the whole
polygonal region, leaving several holes uncolored (‘grey’ in Figure
3.27¢c and d).
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Polyominal Lunda-design generated by a Japanese crest design
Figure 3.26
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Polyominal Lunda-design generated
by an ancient Mesopotamian design
Figure 3.27
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Fractal Lunda-designs

Square Lunda-designs may be used to build up fractals, that 1s
geometrical figures with a built in self-similarity, by replacing each
unit square with the original Lunda-design. Figure 3.28 shows the first
two phases of the building up of two fractals on the base of 3x3
Lunda-designs.

b
First two phases of building up of two fractals

on the base of 3x3 Lunda-designs
Figure 3.28

The methods discussed 1n this paper for the generation of mirror
curves and various types of Lunda-designs can easily be adapted to
computer graphical representation.
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Chapter 4
ON LUNDA-DESIGNS AND LUNDA-ANIMALS

Fibonacci returns to Africa

4.1 Introduction

Lunda-designs are a certain type of black-and-white design. As
they were discovered in the context of analyzing the properties of a
class of curves (see the example in Figure 4.1) drawn in the sand
among the Cokwe, who predominantly inhabit the north-eastern part of

Angola, a region called Lunda, I have given them the name of Lunda-
designs (cf. Gerdes, 1990; 1993-94, chapters 4 and 6; 1996a, b).

Figure 4.1
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Consider an infinite grid having as points (2p, 2q), where p and ¢
are two arbitrary whole numbers. An infinite Lunda-design may be
defined as a black-and-white design with the following characteristic:

(1)  Of the four unit squares (cells) between two arbitrary (vertical or
horizontal) neighboring grid points, two are always black and
two are white (see Figure 4.2a).

Figure 4.3 shows a finite Lunda-design. These finite Lunda-
designs also have a second general property:

(11) Of the two border unit squares of any grid point in the first or
last row, or in the first or last column, one is always white and
the other black (see Figure 4.2b).

B 0B EHBE
& H B RS

Possible situations between vertical and
horizontal neighboring grid points
a
Figure 2

= om PR

Possible border situations
b

Figure 4.2
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Figure 4.3
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Figure 4.4

Polyominoes (either black or white) that appear in Lunda-designs
will be called Lunda-polyominoes. Figure 4.4 displays some Lunda-
polyominoes present in Figure 4.3.

In this chapter the number of possible paths of Lunda-animals
will be analyzed. Here we define a Lunda-animal as a (black) Lunda-
pentomino (consisting of 5 cells) with one unit square at one of its
ends marked as head (H). A Lunda-animal walks in such a way that
after each step the head occupies a new unit square, the second cell
moves to the last unit square previously occupied by the head, the third
cell to the unit square previously occupied by the second cell, etc. In
other words, two subsequent positions of a Lunda-animal have a
Lunda-tetromino in common. A path consists of the actual position of
the Lunda-animal (black in the Figures) and all unit squares through
which the animal passes (white in the Figures). A path may cross
itself or repeat certain tracks (see the example in Figure 4.5).
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Figure 4.5
4.2 Counting the number of possible paths of Lunda-animals

Starting from the initial position in Figure 4.6a, how many paths
p(n) of n steps are possible for a Lunda-animal?

There are three unit squares (marked 1, 2, 3 in Figure 4.6a) to
which the head could move, in principle. To the third one, however, it
cannot move as an inadmissible situation would emerge, with two
neighboring grid points having three black unit squares between them
in contradiction with characteristic (1) [see Figure 4.7]. Therefore,
p(1) = 2; 1n the first case the animal ‘bends its neck’, in the second 1t
keeps 1t straight (see Figure 4.6b).

From the ‘bent neck’ position, the anmimal’s head can only
proceed to the second neighboring unit square otherwise inadmissible
situations would emerge. From the ‘straight neck’ position, the
animal’s head may once again proceed to two possible unit squares (2
and 3). In total, three paths of two steps are possible: p(2) = 3 (see
Figure 4.6¢).
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Of the three final positions of the Lunda-animal, two have
straight necks leading each of them to two new positions in the next
step, one with a bent neck and one with a straight neck. The third has
a bent neck, giving rise to only one new (straight neck) position. In
total five paths of three steps are possible: p(3) = 5, etc. (See Figure
4.6d, e, ...)

Let there be b(i) paths of i steps that end in a position with a bent
neck, and s(1) with a straight neck. Each of these b(1) positions with a
bent neck leads to one position with a straight neck after (1+1) steps.
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Each of the s(1) positions with a straight neck leads, after one more
step, to one position with a bent neck and one with a straight neck. In
other words, for 1=1, 2, ... we have:

(1) b(i+1) = s(1), and
(2)  s(i+1) =Db() + s(i) = p(i).

It follows that for n=2, 3...., we have

p(nt+1)=b(n+1) + s(n+1) =s(n) + p(n) = p(n-1) + p(n), or
(3)  p(ntl)=p(n)+p(n-1).

The recurrence formula f(n+1) = f(n) + f(n-1) with (1) =0, {(2) =
| leads to the famous Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,
1

As we have p(1) =2 and p(2) = 3, our final result 1s:
(4) p(n) =f(n+3) forn=I, 2, 3....

If we had defined a Lunda-animal as a (black) Lunda-m-omino
(consisting of m cells) with m > 5, the answer to the question of how
many positions are possible after » steps is still the same p(n) = f(n+3)
for m < 9. From m=9 onwards, p(n) < f(n+3) holds, as the following
example 1llustrates. The only possible step after the position in Figure
47a (m=9) 1s for the head to go to unit square 3. According to
characteristic (1) of Lunda-designs the head cannot go to unit square 1.
And 1f 1t were to go to unit square 2 (see Figure 4.7b), five neighboring
unit squares are white, which 1s also 1mpossible according to
characteristic (1) of Lunda-designs. In other words, although the
position in Figure 4.7a was that of a straight neck, there is only one
possibility for the animal to continue 1ts path.

! “As Fibonacci says himself, this Italian scholar was trained,
when very young, in Bougie (in today’s Algena, p.g.), one of the
Maghrebian scientific poles of the 12" century and, later, he
reproduced, in his Liber Abbaci, certain aspects of the
Maghrebian mathematical tradition™ (Djebbar, 1995, 25).
Probably he learnt about the ‘Fibonacci” sequence when he was
in North Africa.
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Chapter 5
ON LUNDA-DESIGNS AND POLYOMINOES

5.1 Polyominoes in Lunda-designs

Polyominoes (ct. Golomb) that appear in Lunda-designs will be
called Lunda-polyominoes. Figure 5.2 displays some Lunda-
polyominoes present in the Lunda-designs of Figure 5.1.

In this chapter the question of how many types of Lunda-n-
ominoes there are, will be addressed. A first approximation of the
number of Lunda-n-ominoes will be presented.

Figure 5.1
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5.2 Types of Lunda-Polyominoes

For each » there 1s an infinite number of Lunda-n-ominoes.
Various types of Lunda-n-ominoes are defined on this infinite set by
notions of equivalence in terms of certain groups of isometries of the
plane.

Figure 5.3

Figure 5.3 displays four Lunda-13-ominoes that are equivalent in
the sense that for any of them there exists an appropriate translation,
rotation or reflection, which maps it (together with its neighboring grid

110



points) onto the first. What happens 1f one translates a Lunda-
polyomino 1n such a way that 1ts position relative to the grid changes
essentially, as in the example in Figure 5.4?7 Is the second polyomino
also a Lunda-polyomino?

Figure 5.4

In the case of n=1, or n=2, the answer 1s immediately yes. Let us
consider now a Lunda-n-omino with n > 2. It may be considered as
composed of overlapping triominoes. The cells of each of the
triominoes lie either in the same direction (as in Figure 5.5a, the cells
are indicated by the letter b for black) or in a hook (as 1in Figure 5.6a).
Figures 5.5b and 5.6b show which cells must be white in agreement
with the second characteristic of Lunda-designs. When one translates
these triominoes, together with their accompanying white cells, one
unit to the right and then one unit upwards (see Figure 5.5¢ and 5.6c¢),
it transpires that the resulting positions satisfy the second characteristic
too. As this happens with all the successive overlapping triominoes,
the same 1s true for the whole Lunda-n-omino under consideration.

& 9 2 & & § 8 9 9 2 L L
i .b & L & w.b & & % .E II;.W .
L .b & L & W.b W. & & . b.w .
b b lw
L & & L & L & & » 3 L .
a b C

Figure 5.5
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In other words, in the example of Figure 5.4 we find that the
second 13-omino is automatically a Lunda-13-omino that 1s equivalent
to the first Lunda-13-omino.

— 9o oo oo | o — 9o oo
w|b
L lb L — L W'b L L L .W blb L
' lb bl *— ' w'b bl ' oo VoVl o
W W
$ § $ 9 » 9 9 3 $» 9 P »
a b C
Figure 5.6

5.3. Approximation of the number of Lunda-n-ominoes

For each type of Lunda-n-omino (with n = 2) there exists a
Lunda-n-omino that has 1ts first two cells in a position like that of
Figure 5.7a. For its third cell there are two possibilities (see Figure
5.7b), for 1ts fourth cell there are three possibilities (if we do not count
the abnormal case displayed in Figure 5.7c, where it 1s impossible to
continue with a fifth cell, etc.), for its fifth cell five possibilities, etc.
Therefore we find for the number a(n) of Lunda-n-ominoes with the
given ‘start position’: a(1) =1, a(2) =1, a(3) = 2, a(4) = 3, a(5) = 5, the
first terms of the famous Fibonacci sequence f(n) with £(2) = (1) =1
and f(n+2) = f(n+1) + f(n). Will a(n) = f(n) for all n?

y ® 3 ® »
® ® ® ® Y .
® 2—-— ®
® 1 ®

a b C

Figure 5.7
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If growth were to be unlimited — as 1n the case of Lunda-animals
discussed in the previous chapter — we would have a(n) = f(n).

Figure 5.8 displays the corresponding types of Lunda-n-ominoes
forn=1,...,7.
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Figure 5.8
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Types that are not symmetrical naturally appear twice in the list
(Figure 5.8), as they may be obtained starting from either end.
Therefore we have, in principle (if unlimited growth 1s permitted), for
the number b(n) of types of Lunda-n-ominoes:

(4) b(n) = [s(n) + a(n)] /2, or b(n) = [s(n) + f(n)] /2,

where s(n) denotes the number of symmetrical types of Lunda-n-
Ominoes.

5.4 Symmetrical types
To evaluate s(n), consider odd and even n separately.
Case: n is odd

Figure 5.9 displays the symmetrical types for n=1, 3, ..., 9. Let
n=2m-1.

1)  Any Lunda-(2m-1)-omino that 1s invariant under a half-turn may
be obtained by joining a Lunda-m-omino with the given ‘start

position’ to its copy rotated through an angle of 1809 around the
centre of 1ts first unit cell (see the example in Figure 5.10).

] L L
E— H fr——

Figure 5.10

Therefore there are, at most, a(m)=f(m) Lunda-(2m-1)-ominoes
with rotational symmetry of order 2.
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An odd symmetrical Lunda-n-omino may have a horizontal or
vertical axis of symmetry only if it 1s a straight segment, as the
distance between two hooks curved in the same direction has
always to be an even number of unit cells (see Figure 5.11). As
the straight segment n-minoes have already been taken into
acount (1), they do not need to be considered again. All the other
Lunda-n-ominoes of odd order which are invariant under a
reflection, may be obtained from the hook triomino by joining, in
a symmetrical way and in agreement with the second
characteristic of Lunda-designs, the same number of unit cells at
its two ends. As the number of ways to join & unit cells at each
end of the hook triomino 1s at most f(k+1) (if unlimited growth 1s
permitted), there are at most f(k+1) types of Lunda-(2k+3)-
ominoes with a diagonal axis of symmetry.

From 2k+3 = 2m-1, 1t follows that there are at most f(m-1) types
of Lunda-(2m-1)-ominoes with a diagonal axis of symmetry.

+H BH

Figure 5.11

In agreement with (1) and (11), there are, at most, f(m)+f(m-1), that is
f(m+1), symmetrical types of Lunda-(2m-1)-ominoes. Thus:

(3)

b(Zm-1) < [s(2m-1) + f(2m-1)] /2 < [f(m+1) + f(2Zm-1)] /2.

Case: 1 1s even

Let n=2m.

1)

Suppose that open Lunda-2Zm-ominoes with only a rotational
symmetry of order 2, exist. Then the centre of rotation can only
be the midpoint of the common edge of the m™ and {m+])th unit
cells. As the image, under a half turn about this point, of the last
hook before the mth unit cell — both at an even or both at an
odd distance from the midpoint (see Figure 5.12) — 1s
impossible, according to the second characteristic of Lunda-
designs, open Lunda-2Zm-ominoes with only a rotational
symmetry of order 2 do not exist.

116



tt s

Figure 5.12
Open in this context means that the first and last unit squares do

not have a common edge; 1f this happens we call the Lunda-
polyomino closed (see the examples in Figure 5.13).

i ul:

Examples of closed Lunda-polyominoes (n = 12, 28)
Figure 5.13

In rather exceptional cases closed Lunda-polyominoes with only
rotational symmetry of order 2 may exist. The first two appear
for n=36 (see Figure 5.14).
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11) Types of Lunda-2Zm-ominoes, which are invariant under a
reflection, may be obtained from types of Lunda-m-ominoes by
reflecting them 1n certain horizontal or vertical mirror lines.
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Figure 5.15

Figure 5.15 displays the symmetrical types for n=2, ... , 10. Not
all of them are admissible. The black Lunda-10-omino presented
in Figure 5.16a 1s not admatted, as 1t presupposes the existence of
the white Lunda-polyomino in Figure 5.16b, which cannot exist
as consequence of the second characteristic of Lunda-designs.
Closed symmetrical types with the given start position (s) may
appear several times, as the example 1n Figure 5.17 shows.

a b
Figure 5.16

For m = 6+4k (k =1, 2, ...) closed Lunda-2m-ominoes exist with
only a diagonal axis of symmetry (see the examples in Figures
5.17 and 5.18).
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Three equivalent closed Lunda-28-ominoes
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Figure 5.17
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Examples of closed Lunda-2Zm-ominoes
with only a diagonal axis of symmetry (m= 10, 18)
Figure 5.18

In agreement with (1) and (11), we have that the number s(2m) of
types of symmetrical Lunda-2Zm-ominoes 1s at most equal to a(m) =
f(m) for m>2,

It follows that

(6)  b(2m) < [s(2m) + f(2m)] /2< [f(m) + £f(2m)] /2 for m>2.
We may conclude that the function ¢(n) with

c(n) = [f(m) + f(2m-1)] /2, if n = 2m-1;

and

c(n) = [f(m) + f(2m)] /2, if n=2m,

where m denotes a natural number, 1s a first approximation for the total
number b(n) of types of Lunda-n-ominoes.
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Table 5.1 presents the values of b(n) and ¢(n) for n=1, ..., 10.

Table 5.1
n f(n) c¢(n) b(n) ¢(n)-b(n)
| 1 | 1 0
2 1 | 1 0
3 2 2 2 0
+ 5 2 3 -1
S 3 2} A 0
6 13 J > 0
7 21 9 9 0
3 34 12 12 0
9 55 21 20 1
10 39 30 26 4

Figure 5.19 displays the four inadmissible 10-ominoes.
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Chapter 6
SYMMETRICAL, CLOSED LUNDA-POLYOMINOES

In this chapter we will present some attractive examples of
polyominoes with holes, which are Lunda-polyominoes in the sense
that they may appear in Lunda-designs.
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Figure 6.1 presents the eight types of symmetrical closed 28-
ominoes, which are Lunda-polyominoes. Figure 6.2 shows that their
interiors may be filled in by coloring the unit squares either black or
white 1n such a way that the interiors together with the circumscribed
polyominoes may be part of a Lunda-design. Mostly only one
coloring 1s possible. In the case of the third 28-omino there are two
possibilities, as displayed in Figure 6.2¢l and c2.

f g h

Figure 6.2

Figure 6.3 presents the twenty-seven symmetrical closed Lunda-
36-ominoes with colored interiors. Figure 6.4 shows the seven
possible symmetrical interiors of the second Lunda-36-omino 1n
Figure 3.
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Figure 6.5 presents four closed Lunda-68-ominoes with their
interiors colored. Each of these figures has four mirror symmetries, as
do the Lunda-76-ominoes and Lunda-100-ominoes with colored
interiors, 1n Figures 6.6 and 6.7 respectively.

Figure 6.5
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Figure 6.7

128



Figure 6.8 shows an example of a closed symmetrical Lunda-
100-omino and Lunda-268-omino. Figure 6.9 shows them as part of
symmetrical Lunda-designs of dimensions 28x28 and 40x40.
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Figure 6.8
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Chapter 7
EXAMPLES OF LUNDA-SPIRALS

Figure 7.1 shows part of two black (one shown as grey) and two
white spirals, which together form an infinite Lunda-design with
fourfold symmetry. The eight spirals in Figure 7.2 together constitute
an infinite Lunda-design invariant under a half-turn. Figure 7.3
displays part of a zigzagging spiral embedded in an infinite Lunda-
design.

Figure 7.1
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Figure 7.2
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Chapter 8
LUNDA STRIP AND PLANE PATTERNS

The concept of Lunda-design may be extended in a natural way
to one- and two-dimensional Lunda-patterns.

8.1 One-dimensional Lunda-patterns (Lunda-strip-patterns)
Consider an infinite grnid, I1G(n), having as points (2p,2q-1) with

0<q=<n, where p denotes a whole number, and ¢ and » natural numbers.
Figure 8.1 displays 1G(2).

o o 00 =T = = = ]

Figure 8.1
A one-dimensional Lunda-pattern (of height n) may be defined
as a black-and-white pattern (between the horizontal lines y=0 and
y=2n) with the following characteristics:
(1)  Of the four unit squares between two arbitrary (vertical or

horizontal) neighboring grid points, two are always black and
two are white (see Figure 8.2a);

3 B B B B
& H B S

Figure 8.2
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(11)  Of the two border unit squares of any grid point in the first or
last row, one 1s always black and the other white (see Figure
8.2b).

[ B
I Bl
FiguI:E 8.2

JOROR] Ko

Figure 8.3

Pattern means that the design has translation symmetry. Figure
8.3 presents examples of one-dimensional Lunda-patterns of height 2.
In each of the examples, we also have — as in the case of finite
Lunda-designs — a third characteristic:

(111) In each column there are as many black as white unit squares.

If this happens, we call the one-dimensional Lunda-pattern strong.
Figure 8.4 shows a Lunda-strip-pattern of height 2 that 1s not strong.

Figure 8.4

Lunda-strip-patterns may be either one-color or two-color
patterns. A pattern 1s called a two-color pattern if there 1s some rigid
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motion (rotation, translation, mirror reflection, or glide reflection) of
the strip, which interchanges the colors everywhere. Classification by
symmetry results 1n seven one-color and seventeen two-color strip
pattern classes. For each of the twenty-four one-color and two-color
classes 1t 1s possible to construct Lunda-strip-patterns which belong to
it, as the examples 1n Figure 8.5 show (with the grid points unmarked).
We use the internationally accepted notation of Belov (1956), whereby
each class 1s indicated by four symbols pxyz as follows:

(p)
(x)

(v)

The first symbol 1s p if no translation reverses the two colors; it
1s p’ if some translation reverses the colors.

The second symbol, x, 1s [ if there i1s no vertical reflection
consistent with color; m 1f there 1s a vertical reflection which
preserves color; m " 1f all vertical reflections reverse the colors;
The third symbol, v, 1s / if there 1s no horizontal reflection or
glide reflection; m 1f there 1s a horizontal reflection which
preserves color; m’ if there i1s a horizontal reflection which
reverses colors (except in the two cases beginning with p’ 1n
which two cases y 1s a); a ' if there 1s no horizontal reflection, but
the shortest glide reflection reverses colors; and 1s a otherwise.
The fourth symbol, z, 1s [ if there no half-turn consistent with
color; 2 if there are half-turns which preserve color; 2’ if all half-
turns reverse colors (cf. Washburn & Crowe, 1988, 69).

a. p'mm2
Figure 8.5 (1% part)
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b: pmm?2

e: pm'm’2

f: pmm’'2’
Figure 8.5 (continued)
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Figure 8.5 (continued)




1. pm'a’2

1. pma2
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Figure 8.5 (continued)
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m: pli2’
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p: pm’l1
Figure 8.5 (continued)
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p: pm’l1
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Figure 8.5 (continued)
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Figure 8.5 (continued)
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Figure 8.5 (conclusion)

8.2 Two-dimensional Lunda-patterns

Consider an infinite grid, IG, having as points (2p, 2q), where p
and g denote arbitrary whole numbers.

A two-dimensional Lunda-pattern may be defined as a two-
dimensional black-and-white plane pattern with the following
characteristic:

(1) Of the four unit squares between two arbitrary (vertical or
horizontal) neighboring grid points, two are always black and
two are white.

Two-dimensional or periodic pattern means that the design
admits translations in two or more directions. A two-dimensional
pattern 1s called a two-color pattern if there 1s some rigid motion of the
plane, which interchanges colors everywhere.  Two-color, two-
dimensional patterns are also called mosaic or tiling.

Classification by symmetry results in seventeen one-color and
forty-six two-color, two-dimensional pattern classes. Woods (1936)
was the first to illustrate all the forty-six classes of mosaics. His
mosaics are reproduced in Washburn & Crowe (1988, 74-75). It 15
interesting to note that two of his patterns (33 and 38) are also Lunda-
patterns. They are shown 1n Figure 8.6.

Washburn & Crowe produced flow charts, which facilitate the
classification of one-color and two-color, two-dimensional patterns
(1988, pp. 128-131, 140-141, 154-155, 160, 162).

It 1s mmpossible to construct Lunda-patterns for each of the
classes of two-dimensional patterns, as by definition, two-dimensional

Lunda-patterns cannot admit 60° and 120° rotations.
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b: p4’'gm’
Figure 8.6

In the following pages we will present examples of two-
dimensional Lunda-patterns. Figures 8.7 displays one-color, two-

dimensional Lunda-patterns, which admit 180° and 90° rotations
respectively. Figures 8.8 and 8.9 show two-color, two-dimensional

Lunda-patterns, which admit 180° and 90 rotations consistent with
color respectively.
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Figure 8.7 (1* part)
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Figure 8.7 (conclusion)
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Figure 8.8 (1* part)
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Figure 8.8 (conclusion)

a. p4 'mm’
Figure 8.9 (1% part)
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b: p4'm’'m
Figure 8.9 (continued)
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e: pd’
Figure 8.9 (conclusion)
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Chapter 9

ON THE GEOMETRY OF CELTIC KNOTS AND
THEIR LUNDA-DESIGNS !

George Bain (1951), his son Iain Bain (1986), Aidan Meehan
(1991) and Peter Cromwell (1993) analyzed the construction methods
of the beautiful Celtic knot works that illuminate the pages of the Book
of Kells and the Lindisfarne gospels and decorate Pictish metalwork
and stone crosses in the British Isles (8th and 9th centuries AD).
Together with the Celtic spirals and key patterns these knot works may
be interpreted, in the words of the late John Fauvel (1990, p.6), as
Celtic ethnomathematics. Harald Gropp (1996) draws attention to
calendar reckoning as part of Celtic mathematics. In this chapter, I
will present examples of Celtic knots and show how they generate
attractive black-and-white designs that I call Lunda-designs. Global
and local symmetry properties of Lunda-designs will be analyzed, as
well as suggestions for the educational use of these designs will be
grven.

Figure 9.1a presents the Celtic foundation knot (Meehan, 1991,
p.8). It may be generated in the following way. Consider the 2x2
point grid in Figure 9.1b. Imagine a light ray emitted from A, making

an angle of 45° with the sides of the square and being reflected on the
sides of the square and on a double-sided mirror between the points B
and C (Figure 9.1c). After several reflections the light ray returns to A
(Figure 9.1d). Figures 9.1e and 9.1f present the smooth version of the
closed polygonal path of the light ray. This version will be called a
mirror curve (cf. Gerdes, 1990, etc.; Jablan, 1995). The Celtic

1 First published in: Mathematics in School (UK), Vol. 28, No. 3, May
1999, 29-33.
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foundation knot 1s topologically equivalent to the mirror curve in
Figure 9.1f: the lower zigzag loop has been smoothened into an arc.
Many Celtic knots can be generated 1n a similar way.

d e f
Figure 9.1

Figure 9.2 presents a second example: Consider a 4x5 point grid
(Figure 9.2a). In the centre between some (horizontal or vertical)
neighboring grid points double sided mirrors are placed horizontally or
vertically (Figure 9.2b). Figure 9.2c¢ shows the subsequent mirror
curve, that 1s equivalent to the Celtic knot 1n Figure 9.2d, the Lagore
Crannog knot (Meehan, 1991, p. 113).

In the two examples the distance between two horizontal or
vertical neighboring grid points has been chosen equal to 2 units, and
the distance between a border grid point and the rectangular border
equal to one unit. By consequence, each of the mirror curves passes
exactly once through each of the unit squares in which the respective
rectangular grids can be decomposed. This enables us to color the
successive unit squares through which the curve passes alternately
black and white. Starting with a white unit square, we obtain in the
case of the Celtic foundation and Lagore Crannog knots (see Figures
9.3 and 9.4) the black-and-white designs presented in Figures 9.3¢ and
9.4b.
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Figure 9.4

This type of black-and-white design I call Lunda-design. 1
discovered them in the context of analyzing a generalization of a type
of figure traditionally drawn by Cokwe storytellers in the sand to
illustrate their tales, fables and proverbs (cf. Gerdes, 1990, 1995,
1997a). The Cokwe live predominantly in northeastern Angola, a
region called Lunda. Hence the name Lunda-design. Lunda-designs
have interesting local and global symmetries.

Figure 9.5 presents further examples of Lunda-designs generated
by mirror curves that are topologically equivalent to Celtic knots
reproduced by Meehan (1991, pp. 123, 122, 142) and Wilson (1983,
Pl. 28). Students may be asked to look in the literature for
reproductions of Celtic knots, and construct, if possible, their
corresponding mirror curves and Lunda-designs. Which properties do
all these Lunda-designs have in common? What happens in between
neighboring grid points? What happens between the border and the
orid points near to 1t?

Figure 9.5 (first part)
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Figure 9.5 (second part)

Once conjectures have been found, they may be tested. For
instance, are they verified in the cases of the Lunda-designs presented
in Figures 9.6 and 9.7, generated by mirror curves that are
topologically equivalent to Celtic knots reproduced by Meehan (1991,

p. 130) and Davis (1991, p. 21).

Figure 9.6 (first part)

165



EEII]EEI

e e e
s B ™

1[=a[1[=a]

b
Figure 9.6 (second part)

€b¢b¢o¢b¢b¢o¢b¢b¢¢¢b¢b
50200002600 500000600500 0
XXX X XKD IHDIRIKIKDIAKK
0707000000000 0. 0 00
SEHKEKELKELRKELRKELR LK LRSS
2050706072060 70760 76, 260.76.200 06200002020
R RRRIRIRIHRIRIHIRIH
KSR K
R SRR IR RKK S
O

%
S
0%
K
0%
5
3
S5
i
3
(>

&
X
0
&

X
Y%

RIS
X RIEG
RRIIHHIEIIDIIRIHIDIAI
SEIREIEZRLILRILRILILIIXIEGIIHKIK,

O

Figure 9.7 (first part)

Figure 9.8 displays some symmetrical parts of the Lunda-design
in Figure 9.7.
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As may be proven (Gerdes, 1996), Lunda-designs have the
following two local (two-color) symmetry properties:

(1) Along the border each grid point always has one black unit
square and one white unit square associated with 1t (see the
example in Figure 9.9a);

(11) Of the four unit squares between two arbitrary (vertical or
horizontal) neighboring grid points, two are black and two are
white (see the examples in Figure 9.9b).

- H A

a b
Figure 9.9

From this, it follows that Lunda-designs have a global symmetry,
characterized by the phenomenon that:

(111) 1n each row (and i1n each column) there are as many black unit
squares as there are white unit squares.

Conversely, as for each black-and-white design that satisfies the
characteristics (1) and (1) a mirror curve may be produced that
generates it (for a proof, see Appendix 1), these characteristics can be
used to define Lunda-designs.
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In each of the examples of Celtic knots presented so far, the
mirror curve passes through a/l unit squares of the rectangular grid. In
other words, the knots are composed of only one line. Let us call such
knots monolinear or 1-linear. However, there are polylinear Celtic
knots, composed out of more than one line. Figure 9.10a presents the
topological equivalent of a 2-linear knot reproduced by Meehan (1991,
p. 146). If we color now alternately black and white the unit squares
through which that curve passes that ‘starts’ in the lower left corner of
the grid, only part (1n this case, half) of the unit squares will be colored
(see Figure 9.10b). As there exist two possibilities to color the unit
squares through which the second closed curve passes (see Figure
9.10c and d), there emerge two associated black-and-white designs
(see Figure 9.10e and f). It is easy to verify that both are Lunda-
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designs. More in general, it may be shown that a n-linear knot,
topologically equivalent to a n-linear mirror curve design, generates

on-1 Lunda-designs. Both associated Lunda-designs in Figure 9.10e
and f have a two-color symmetry axis: reflection in their horizontal
axes interchanges black and white.

All Lunda-designs constructed in this paper have two-color
symmetries. The Lunda-designs in Figure 9.5a and b have horizontal
two-color axes, whereas their generating mirror curves are not
symmetrical. The Lunda-designs in Figures 9.3, 9.4, 9.5¢ and d, and
9.6 have horizontal and vertical two-color symmetries. The Lunda-
design in Figure 9.7 has a two-color rotational symmetry: a half turn
about its centre interchanges black and white. This attractive Lunda-
design displays wvarious other interesting local symmetries, as the

S

RIS

Figure 9.11

Figure 9.11 presents the topological equivalent of a monolinear
Celtic knot. The Lunda-design generated by this mirror curve 1s the
one already presented in Figure 9.10e. This constitutes a concrete
example of the fact that distinct knots may generate the same Lunda-
design. The general question of how the number of Lunda-designs
depends on the dimensions of the reference grids 1s still open. Some
answers for particular classes of Lunda-designs have been found (cf
Gerdes, 1996).

Another interesting topic for further investigation 1s that of
sequences of Lunda-designs. Figure 9.12 presents the first elements of
a sequence of mirror curves. The fifth element is topologically
equivalent to a monolinear Celtic knot (see Figure 9.13), reproduced
by Jones (1856, T. LXIV, no. 10). This sequence of mirror curves
generates a sequence of Lunda-designs, of which the first elements are
represented in Figure 9.14. Is it possible to predict how this sequence
will continue without constructing first the mirror curves and then
generating the corresponding Lunda-designs?
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One way to find an answer to this question is the following. Let
us divide each of the Lunda-designs belonging to the sequence into
vertical slices of a width of to unit squares. There are 8 distinct slice
types, as illustrated in Figure 9.15: A and A’, Band B’, C and C’, and
D and D’ are each other negative. When we rotate C about 1ts centre

through an angle of 180° we obtain B. Using this notation we have t
= A, th = ABC, t3 = BDDCA’, etc. (see Figure 9.16). Can we
discover some structure in this letter pattern?

il \
SYHEHT

f

Figure 9.15
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In each of the diagonal directions, there seems to be cycle of
length 4. (AABB), (BDDB),..., (ACA’C’), (BCB’C’), etc. (see Figure
9.17a). Extrapolation on the basis of these experimental data leads us
to conjecture a letter pattern built up out of repeating ‘zigzag rhombr’
(see Figure 9.17b).

A
A B C
B D D C A
D D C A B C
c ABDDC[A]
A
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The ‘zigzag rhombus’ has interesting symmetries. It 1s composed
each of the letter elements of the

of two halves (see Figure 9.18):

second one is the negative of the corresponding letter element of the
first one. Moreover each half 1s invariant under a half turn about its
centre (see Figure 9.19).
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Figure 9.19

Figure 9.20 presents the black-and-white ‘zigzag rhombus’. We
may call the black-and-white designs in Figure 9.19 and 9.20
polvominal Lunda-designs (cf. Gerdes, 1996, 1997). Figure 9.21b
presents another polyominal Lunda-design, generated by a Celtic knot
(Figure 9.21a), reproduced by Jones (1856, Pl. LXIV). For other
generalizations, like circular, hexagonal, and polyhedral Lunda-
designs and (multicolor) Lunda-k-designs, and Lunda-strip and plane
patterns, see Gerdes (1996, 1997, 1998a). Figure 2.27 shows the first
three phases of building up a Lunda-fractal, generated by the Celtic
foundation knot (cf. Figure 9.1a and 9.3¢).




176



References

Bain, George (1951), Celtic Art: The methods of Construction,
Constable, London

Bain, Iain (1986), Celtic Knotwork, Constable, London

Cromwell, Peter (1993), Celtic knotwork: Mathematical art, The
Mathematical Intelligencer, 15(1), 36-47

Davis, Courtney (1991), Celtic Designs and Motifs, Dover, New York

Fauvel, John (1990), Mathematics through History: A resource guide,
QED, York

Gerdes, Paulus (1990), On ethnomathematical research and symmetry,
Svmmetry: Culture and Science, 1(2), 154-170

~ (1995), Une tradition géomeétrique en Afrique — Les dessins sur le

sable, L’ Harmattan, Paris (3 volumes)

(1996), Lunda Geometry: Designs, Polyominoes, Patierns,

Svmmetries, Universidade Pedagogica, Maputo

~(1997), On mirror curves and Lunda-designs, Computers and
Graphics, Oxford, 21(3), 371-378 (See chapter 3).

_(1997a) ,Ethnomathematik dargestellt am Beispiel der Sona

(Geometrie, Spektrum Verlag, Heidelberg

(1999), Generation of Lunda-designs, in: P. Gerdes, Geometry

from Africa: Mathematical and Fducational Explorations, The

Mathematical Association of America, Washington DC (chapter 4)

Gropp, Harald (1996), Some remarks on Celtic mathematics,
Proceedings of the ICME-8 satellite meeting of the International
Study group on the relations Between History and Pedagogy of
Mathematics (HPM), APM, Braga, Vol. 2, 162-169

Jablan, Slavik (1995), Mirror generated curves, Symmetry: Culture
and Science, 6(2) 275-278.

Jones, Owen ([1856] 1986), The Grammar of Ornament, Omega
Books, Hertfordshire

Meehan, Aidan (1991), Celtic Design: Knotwork, The Secret Method
of the Scribes, Thames and Hudson, London

Wilson, Eva (1983), FEarly Medieval Designs, British Museum,
London

17



178



Chapter 10
RECENT VARIATIONS AND GENERALIZATIONS !

Instead of enumerating the unit squares through which a mirror-
curve passes modulo 2 and thus producing a Lunda-design, it 1s
possible to enumerate them modulo s, where s designates any divisor
of the total number of unit squares. For instance, Figure 10.1 displays
the mod 3 and mod 5 designs generated in this way by the Cokwe
chased-chicken mirror-curve (Figure 1.1). The question arises how to
characterize the local and global symmetries of these mirror-curve-
modulo-s designs. Conversely, 1s 1t possible to define these designs on
the basis of their symmetries?

Figure 10.1

I Last section of the paper “Symmetrical explorations inspired by
the study of African cultural activities,” published in: Istvan
Hargitta1 & Torvand Laurent (Eds.), Svmmetry 2000, Portland
Press, London, 2002, 75-89.
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Instead of enumerating the unit squares mod 2, that is, 0101, etc.
one may enumerate them 0011, etc. If this 1s done, regular mirror-
curves generate horizontal or vertical bar designs. Figure 10.2b
illustrate the example generated by the mirror-design in Figure 10.2a.
Figure 10.2¢ displays an irregular mirror-design and its corresponding,
symmetrical 0011-design (Figure 10.2d).
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c d
Figure 10.2

Instead of enumerating the unit squares mod 2 or coloring them
alternately black and white, 1t 1s possible to color them all in the same
way. For instance, it 1s possible to color each unit square through
which the (polygonal) mirror-curve passes on its right side black and
on its left side white (light grey in the Figures), as Figure 10.3a
indicates. For instance, the chased-chicken mirror-curve produces the
design in Figure 10.3b. All regular mirror-curves generate similar
designs of repeating blocks (Figure 10.3c). Irregular mirror-designs
and their corresponding mirror-curves may produce other types of
richt-flag-designs. For example, the mirror-design in Figure 10.3d
generates the right-flag-design in Figure 10.3e. The local symmetries
of these right-flag-designs are characterized by three pairs (positive
and negative) of possible situations between horizontal neighboring

150




grid points (Figure 10.3f) and one pair of possible situations between a
border grid point and the border (Figure 10.3g).

Figure 10.3 (first part)

181



f

Figure 10.3 (second part)

A

be the reason of this symmetric invariance?

y

What will happen 1if the flags alternate from left to right (Figure
10.4a) instead of being always on the right side? Figures 10.4b and ¢
show a regular and an irregular mirror curve design of the same
dimensions that generate the same left-right-flag-design (Figure
10.4d). Will all left-right-flag-designs be of this type? If so, what may

a
@ L L @
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] I‘l »
C

Figure 10.4
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In the case one uses four colors for the left and right flags and
they appear in the sequence indicated in Figure 10.5a, the mirror-
curves 1n Figures 10.5b and ¢ produce the four-color designs in Figure
10.5b and ¢. By reducing these designs modulo 2, that i1s by taking the
third color equal to the first and the fourth equal to the second, the
two-color designs in Figures 10.5d and e are generated. Will all
regular mirror-curves lead to the same type of four-color design?
Which symmetries and other characteristics do these four-color-flag-
designs have in common? And what can be said about their two-color
counterparts”

Figure 10.5
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The  right-flag-designs, left-right-flag-designs  and  the
aforementioned four-color-flag-designs are all particular instances of
eight-color-flag designs generated by coloring the unit squares
through which a mirror-curve passes successively on the left and on
the right with eight colors as schematically indicated in Figure 10.6a.
In the case a=b=e=f, c=d=g=h, and a=c, our eight-color designs
become Lunda-designs; in the case a=c=e=g, b=d=f=h, and a=b, they
become right-flag-designs, etc. Which are the local and global
symmetries displayed by these eight-color designs? For instance,
Figure 10.6b and ¢ show the eight-color designs generated by the
regular and 1rregular mirror-curve designs in Figure 10.4b and c.
Which characteristics do they have?

Figure 10.5 (first part)
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Figure 10.6 (second part)

Another type of design 1s produced when 1t 1s also admitted that
the flags may appear not only in left and right position, but also in up
and down position, in agreement, for example, with the four-color
scheme displayed in Figure 10.7a. Figure 10.7b and ¢ present the
four-color designs produced in this way by the mirror-curve designs of
Figure 10.4b and c¢. By reducing these designs modulo 2, the two-
color designs 1n Figure 10.7d and e are generated.

a
Figure 10.7 (first part)




Figure 10.7

These left-right, up-down flag designs together with the
aforementioned generalization of eight-color flag designs, belong to a
more general class of 16-colour designs that are generated by coloring
the unit squares through which a mirror-curve passes successively
according to the scheme in Figure 10.8a. Figure 10.8b shows the 16-
colour design produced by the reduced chased-chicken mirror-curve in
Figure 10.4b. All regular mirror-curves generate similar designs. In
these designs the colors 1n the unit squares appear in four positions, T
(position 1), < (2), i (3), and — (4) (see Figure 10.9a). Figure 10.9b
displays the distribution of the positions 1, 2, 3 and 4 in the
corresponding grid. A question open for further research is which are
the common symmetry characteristics of all 16-color designs,
including those generated by irregular mirror-curves. Is 1t possible to
define these 16-color designs independently from mirror-curves, as it
was possible in the particular case of Lunda-designs?
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Appendix 1
PROOFS OF SOME THEOREMS CONCERNING

THE RELATIONSHIP BETWEEN

RECTANGLE-FILLING MIRROR CURVES AND
LUNDA-DESIGNS

In this appendix we prove the theorems announced in Chapter 2
concerning the relationship between (rectangle-filling) mirror curves
|or monolinear mirror lines designs| and mxn Lunda-designs.

A mxn Lunda-design 1s a black-and-white design on a rectangular
grid RG[m,n| defined by the following characteristics:

(1)  Of the two border unit squares of any grid point in the first or
last row, or 1n the first or last column, one 1s always white and
the other black;

(11) Of the four umit squares between two arbitrary (vertical or
horizontal) neighboring grid points, two are always black and
two are white.

Theorem 1

Every (rectangle-filling) mirror curve generates a Lunda-design.

Proof

As the mirror curve traverses the rectangular grid RG|m,n| the
successive unit squares it passes through are colored alternately black
and white. The black-and-white design 1t generates m this way
satisfies property (1), since the mirror curve embraces all the grid
points, and when embracing a border grid point the two unit squares it
then passes through on the border side are of different colors.
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Let us now assume that a pair of (horizontal or wvertical)
neighboring grid points exist in between which there are 3 or 4 white
unit squares instead of 2 (in the case of 3 or 4 black unit squares the
reasoning will be the same).

D

A B

Figure A.l

We first consider the case of 3 white unit squares (see Figure
A.l). When the curve enters the white unit square A 1t may only
continue 1ts way through the grid by entering the black unit square D,
since after a white unit square a black unit square always follows.
When later the curve enters the 2x2 square by the white unit square B
or C, it cannot leave the 2x2 square. This means that the curve 1s not
closed, what 1s in contradiction with the fact that the curve 15 a
(rectangle-filling) mirror curve. The same reasoning applies when the
curve first enters the white unit square B or C.

If the 2x2 square consisted of four white unit squares, the curve
could only enter 1t, and not leave 1t (see Figure A.2). This once again
contradicts the fact that the curve is closed. This completes the proof.

Figure A.2

Theorem 2
Any mxn Lunda-design has the following two properties:

(1) In each row there are m black and m white unit squares;
(11) In each column there are n black and » white unit squares.
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Proof:

(1)

(2)

We prove (1) row by row.

In the first row (= border row) there are as many black as white
unit squares, as in agreement with the definition of a Lunda-
design [property (1)] each border grid point has one black and
one white adjacent unit square. Moreover, since the total
number of unit squares in the first row is 2m, it follows that both
the number of black and the number of white unit squares are
equal to m.

*——o o——o *— o
5
4
199 9o o 19
3
2
S SRR 19—  iieeriininns
Figure A3

Consider now the first two rows of unit squares together (see
Figure A.3). Between the successive grid points there are always
2 black and 2 white unit squares [property (11)]. As there are m
grid points on a row, there are in total 4(m-1) unit squares
between them. of which half are black and half are white, 1.e.
2(m-1). We have still to count the black and white unit squares
in the first and last border columns, which are adjacent to grid
points in the first row of grid points. Once more, according to
property (1), in each of these 1x2 rectangles we have one black
and one white unit square. Therefore the total number of black
unit squares in the first two rows of unit squares 1s 2(m-1)+2 =
2m.

As, according to (1), the total number of black unit squares in the
first row 1s m, 1t follows that the total number of black unit
squares in the second row 1s 2Zm-m = m. The same 1s true for the
white unit squares.
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(3) Consider the second and third rows of unit squares together.
This time these unit squares lie between vertically neighboring
orid points. As there are m of such pairs of wvertically
neighboring grid points, there are in agreement with property
(11), 2m black and 2m white unit squares in the second and third
row together. Since, according to (2), the number of black unit
squares in the second row 1s m, it follows that the number of
black unit squares in the third row 1s 2m-m = m. The same 15
true for the white unit squares.

Advancing in this way by considering pairs of successive rows of
unit squares, it follows that in all rows there are exactly m black and m
white unit squares. On symmetry grounds, it immediately follows that
there are » black and » white unit squares in each column of unit
squares. This completes the proof.

Theorem 3

Given a mxn Lunda-design, 1t 1s possible to construct a mirror
curve that generates it.

Proof

The construction may be executed in the following steps:

(1) Substitution of the black-and-white 2x1 rectangles 1n the border

rows and columns by single curve elements, as shown in Figure
A 4;

B

N
/7?

_

Figure A.4

(2) Substitution of the black-and-white 2x2 squares, between
vertically neighboring grid points, by pairs of curve elements
which are locally compatible with the coloring (see Figure A.5);
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(3) Substitution of the black-and-white 2x2 squares, between
horizontally neighboring grid points, by pairs of curve elements
which are locally compatible with the coloring (see Figure A.6).

"B s RUNPR &
= W”*(\EI

Figure A.6

Figure A.7a-d presents a concrete example of the execution of the
first three steps of construction.

The total set of curve elements thus constructed constitutes one or
more closed mirror curves [1.e. a monolinear or a polylinear mirror
lines design, cf. chapter 1], which together embrace all grid points
(four curves in the example [Figure A.7e]).

3

bl

3

(4) If there 1s a crossing of two curves, it may be substituted by a
couple of opposite ‘moon’ elements that i1s locally consistent
with the coloring (see Figure A.8). In this way the two curves
are transformed into one new curve and the total number of
curves 15 reduced by one. If after this step there are still
crossings of distinct curves, the step may be repeated (see steps e
to fand f to g in Figure A 7).
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Figure A.8

(5) If there are no more crossings of distinct curves but more than
one curve still exists, then there must be one or more horizontal
‘kissings’ of opposite ‘moon’ elements belonging to different
curves. Such a horizontal ‘kissing’ has to be substituted by a
vertical ‘kissing’ (see Figure A.9). This type of substitution does
not affect the coloring of the unit squares, and reduces the total
number of curves by one.

BB RN
a8 B P

Figure A9

Repeating step (5) as many times as necessary, the total number
of curves becomes gradually reduced until a rectangle-filling mirror
curve |1.e. a monolinear mirror lines design, cf. chapter 1| remains (see
in the example of Figure A.7 the transition from g to h). The final
position of the mirrors i1s in the middle of the remaining opposite
‘moon’ elements (see the example 1n Figure A.7h).

This completes the proof.
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