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PREFACE 

(First edition) 

Lunda-designs are a type of black-and-white design that I 
discovered while analyzing properties of a special class of sOlla sand 
drawings from eastern Angola and neighboring regions of Zambia and 
Congo / Zaire. The elements of this class are mirror-generated curves, 
and generate, in turn, Lunda-designs . 

The chapters of this book are comprised of papers on mirror 
curves, Lunda -designs and related concepts such as Lunda­
polyominoes and Lunda-patterns. Most chapters may be read 
independently of each other. 

Chapter I is a partial translation of Chapter 6 of the second 
volume of Sona Geometry, and analyses the mirror curve class of sona 
sand drawings and some of their basic properties. In this chapter, I 
also describe the discovery of Lunda-designs_ Chapters 2: and 3 
present an introduction to Lunda-designs, their symmetries, and some 
of their generalizations such as Lunda-k-designs and hexagonal 
Lunda-designs, These papers were published in the international 
journals Visl/al Malhemalics (1999) and Compl/lers and Graphic.I' 
( 1997) respectively_ 

In Chapter 4, I introduce the concepts of Lunda-polyominoes and 
Lunda-animals, and evaluate the number of possible paths of given 
lengths that may be traversed by Lunda-animals. The famous 
sequence of Fibonacci surprisingly appears in this context. 

Chapter 5 presents a first approximation for the number of 
Lunda-n-ominoes, In Chapters 6 and 7, I explore special classes of 
Lunda-polyominoes such as symmetrical closed Lunda-polyominoes 
and Lunda-spirals, Finally, in Chapter 8, I show that for all twenty­
four classes of one-color and two-color, one-dimensional patterns, it is 
possible to construct Lunda-strip-patterns, which belong to them_ 
Furthermore, I present examples of one-color and two-color, two­
dimensional Lunda-patterns. 
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Appendix I presents the proof of the theorem that every mirror 
design generates a Lunda-design, and, inversely, for every (finite) 
Lunda-design a mirror design that generates it may be constructed. 

Lunda-designs present a concrete example of how 
ethnomathematical research can lead to both fruitful and interesting 
ideas of se rious mathematical reflection. I hope the book LUNDA 
Geumelly wi ll stimulate further research on these aestheticall y 
attractive figures. 
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PREFACE 

(Second edition) 

The new edi tion of the book Lllnda Geometry contains two 
additional chapters. Chapter 9, entitled 011 the Geometry of Celtic 
knots and their Lllnda..(/esigns, was published in the British journal 
Mathematics in School (\999). Chapter lOis the last section of an 
invited paper presented al the Wenner-Gren International Symposium 
"Symmetry 2000" (Stockholm, September 13-16, 2000) and published 
in the proceedings. The new edition does not include the review of 
Solomon Golomb's book Po/yolllinoes, published in Archives 
infernariollales d 'Hisloire des Sciences (1998,48. No. 140, 174- 176). 

Chapter 4 of my book GeOIl/CllY from Africa: Malhclllaticaf and 
Educational Explorations, published by the MAA ( 1999), presents an 
introduction to Lunda-designs and includes a section on Lunda­
polyhedral-designs and a board game, The relationship between 
Lunda-designs and magic squares is explored in a paper published in 
71le College Mathematics Journal (2000). 

The study of Lunda-designs led to the discovery of Liki-designs 
(2002a, 2002b) and of various types of matrices, including cycle 
matrices (see e.g. the papers published in the electronic journal Visual 
Mathematics). The book Adventures in the World a/Matrices (2007d) 
presents an introduction to cycle matrices. Further books on the 
beautifu l geometry and linear algebra of Lunda-designs are 
forthcoming, 

The paper Llinda Symmetry where Geomelry meeli)' Al'l (2005) 
explores some relationships between Lunda Geometry and art. 
Mathematician and artist John Sims of the Ringling School of Art and 
Des ign (Sarasota, Florida) organized a math-art exhibition including 
some of colorful Lunda-designs I had prepared. A book on Lunda ­
designs and art is in preparation. 

Maputo, October 2007 
Paul us Gerdes 
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Chapter I 

ON SONA SAND DRA WINGS, MIRROR CURVES 
AND THE GENERATION OF LUNDA-DESIGNS 

1.1 About .wnw sand dr'awings 

The sona tradition belongs to the heritage of the Cokwe and 
neighboring peoples in eastern Angola, and northwestern Zambia . 
When the Cokwe gathered at their village meeting places or at their 
hunting camps, they usually sat around a fire or in the shadow of leafy 
trees spending their time in conversations illustrated by drawings in 
the sand. These drawings are called /1IS(ma (singular) or sOlla (plural), 

Each boy learnt the meaning and execution of the easier .1'0110 

during their period of intensive schooling, the initiation rites. The 
more complicated .JOIW were transmitted by specialists, called the 
akwa kllla sona (those who know how to draw), to their male 
descendants, These drawing experts were at the same time the 
storytellers who used the sand drawings as illustrations for proverbs, 
fables, games, riddles and an imal s. 

In order to faci litate the memorization of their standardized sona, 
the akwa kllla sona invented an interesting mnemonic device. After 
cleaning and smoothing the ground, they first set out an orthogonal 
grid of equidistant points with their fingertips, The number of rows 
and columns depends on the motif to be represented. Then they draw 
a line figure that embraces all the grid points. To do so they apply the 
geometrical algorithm that corresponds to the motif to be represented . 
Figure 1.1 displays an example: the line figure represents the path 
followed by a wild chicken trying to escape its hunters, 

II 

, 



Figure 1.1 

An analysis of the JOlla sand drawing tradition and a contribution 
to its reconstruction is presented in the first volume of my book SOlla 
Geometl), - Reflectioll.s 011 the tradition oj salld drawing.s ill Africa 
South oJflle eqllGfOr (1994, 2006) . 

1.2 Towards a discovery 1 

When one studies a proof one rarely learns how the 
mathematician discovered his result. The path that leads towards a 
discovery is generally very different from the paved road of the 
deduction. The path to the discovery begins by zigzagging across a 
dense ly vegetated area full of obstacles, and apparently without exit, 
unti l suddenly it comes to an open space with flashes of surprise. 
Almost immediately the delight of the unexpected "heureka" (Greek : 
" I found", "I discovered") opens the road triumphantly. 

Often confronted with students' question about how I discovered 
the theorem s which wi ll be proved in the next section, 1 will now try to 
re-open the road in the hope of stimulating mathematical research by 
new generations of akwa kllia .wna - drawing experts. Once the 
road is reconstructed, the mystery of inspiration is solved. 

In order to facil itate the execution of the .\"Olla sand drawings 1 
was analyzing, 1 became used to drawing them on squared paper with 
a distance of two units between two successive grid points (see Figure 
1.2). 

I 

12 

This section is a partial translation of chapter 6 of the author's 
book Geomefria Sana, VoL 2, ISP, Maputo, 1993, The questions 
to the readers and the problem section have been deleted. 
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Figure 1.2 

In this way, a monolinear drawing like the "chased chicken path" 
(see Figure 1.3) passes exactly once through each of the small squares 
inside the circumscribed rectangle. 

Figure 1.3 

This allows the possibility of enum erat ing the small sq uares, I 
being the number attributed to the small square where one starts the 
line, and 2 the number of the second unit square through which the 
curve passes, and so on successively until the closed curve is 
complete. See the example begun in Fi gure 1.4 and concluded in 
Figure 1.5. 

11 
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5 6 

4 
7 

3 8 

2 
9 

1 10 

11 
1 

13 

Figure 1.4 

Figure 1.5 

The path followed by the " chased chicken" is aesthetically 

attractive. The desi gn displays a rotational symmetry of 1800 (see 
14 
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Figure 1.1 once more). This leads to the following question : How is 
the beauty and the symmetry of this sand drawing reflected in the 
enumeration of the small squares? 

For example, what relationship does exist between two small 

sq uares, which correspond to each other under a rotation of 1800 ? The 
first number of the first row, 106, corresponds to the last number of the 
last row, 15; the second number of the fir st row, \OS, corresponds to 
the penultimate number of the last row, 16. In both cases, the sum of 
the num bers of the two correspond ing small squares is equal to 12 1. 
Will the same happen in the other cases? The small square with 
number 72 corresponds to the small square with number 49; the small 
square of number 93 corresponds to the small square with number 28, 
etc. (see Figure I .6). The sum is always equa I to I 21 , that is, equal to 
the number of the last sma ll square in the enumeration, plus one. 

Figure 1.6 

The reader is invited to find a proof for the truth of th is 
affirmation. What wi ll happen if we start the enumeration in another 
small sq uare or in another direction : Will the sum of the numbers of 

two small squares, which correspond under a rotation of 1800 , a lways 
continue to be equal to 121? 

IS 

, 



Will the beauty of the sand drawing under consideration also be 
reflected in other ways in the enumeration of the small squares? 

When we enumerate the small squares, we obtain a rectangle of 
numbers. Will this numerical rectangle be interesting, that is, for 
example, ' magic '? A numerical rectangle is called 'magic' if, for all 
rows, the sums of the numbers of their small squares are equal and if, 
at the same time, for all columns, the sums of the numbers of their 
small squares are equal too. Figu re U displays the sums of the 
num bers row by row. Only some of them are equa l. Have we come to 
a dead· end? 

826 

826 

650 

650 

786 

802 

802 

626 

626 

Figure L1 

Let us consider a s imilar, smaller design (see Figure L8) and let 
us count the smaller squares from the center outwards. Figure L9. 
shows the result Calculating the sums of the numbers, row by row, 
and, column by column (see Figure 1.10), we verify that the sums of 
four rows are equal to 196 

16 
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Figure 1.8 

Figure 1.9 

203 203 171 171 123 123 91 91 

Figure 1.1 0 

196 

196 

172 

220 

196 

196 

, 
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We would like to see that the six sums are equal, but on ly four 
are. Bad luck .. . The numerical rectangle is not ' magic' .. . , or could it 
sometimes be that 

220 = 196 = 172? 

Distinct numbers never can be really equal ; at most they may be 
equivalent or equal modu lo III . This means that their difference is a 
multiple of the natural number III. 

For which values of III may 220 = 196 = 172 modulo 11/ happen? 
If 220 = 196 modulo III , then their difference 220-196, that is 

24 , has to be a multiple of m . 
We would also like to see that the sums of the numbers in the 

columns are equal: 
203 = 17 1 = 123 = 91. 

As they are in fact not equal, we would prefer that they are equal 
modul o the same num ber m. Therefore, 203-171 , that is 32, has to be 
a multiple of 11/, As both 32 and 24 are mu ltiples of 111,32-24, that is, 8 
also has to be a multiple of III . In th is way we see that '" may only be 
8, 4 or 2. Let us analyze the possi bi lity m=8. 

Instead of counting naturally the small squares through which the 
line passes , that is, 1,2, 3, 4, 5, , .. , 48, let us enumerate them modulo 
8 

1,2, 3, 4, 5, 6, 7,0, 1, 2,3, 4,5,6,7, 0, ... 

Figure 1.11 shows the start of the enumeration modulo 8 and 
Figure 1,12 the fina l result. We note that the numerical rectangle that 
is thus obtained is ' magic' modulo 8, as 28=20=36=4 modulo 8 and 
11=27= 19=3 modulo 8. 

Figure l.ll 

IS 
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Let us now attentively observe the distribution of the numbers I , 
2, 3, 4, 5, 6, 7, 0, throughout the rectangle. What happens to the 
numbers offour small squares, which touch the same grid point? 

We may see that, in most cases, four consecutive numbers appear 
around a grid point: 

* 3, 4, 5, 6 around the second point of the first row of the grid ; 
* 2, 3, 4, 5 around the third point of the first row of the grid, etc. 

11 27 27 19 19 27 27 11 

Figure 1.12 

28 

28 

20 

20 

36 

36 

In only four cases does this not happen. For example, around the 
first point of the first row, we find 0, I , 2, 7 instead of 0, I, 2, 3; 
around the thi rd point (on the left hand side) of the second row, we 
find 0, I, 6, 7 instead of 0, 1, 2, 3. What is to be done? 

If only 6=2 and 7=3, then the situation would be ' normalized '. 
Counting modulo 4 or modulo 2, we have 6=2 and 7=3. 

Figure 1.13 

19 
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Let us now enumerate modu lo 4 instead of modulo 8 the small 
squares through which the curve passes successively_ Figure 1_ 13 
shows the beginning of the enumeration modulo 4 and Figure 1.14 the 
conclusion: 

Figure 1.14 

Now we find the numbers 0, 1, 2, and 3 around all grid points; the 
rectangle of the sma ll squares remains ' magic'. Moreover, we have 
won new and beautiful surprises : the disposition of 0, I , 2, 3 is 
alternately clockwise and anti-clockwise (see Figure 1.15); between 
four neighboring grid poi nts there are always four equal numbers (see 
Figure 1.14 once again). 

Fi gure 1.15 

Will the same happen with the larger ' chased chicken ' sand 
drawing in Figure 1.3, and with other regular and monolinear sand 
drawings like that of the ' lion 's stomach ' (see Figure 1.1 6)? 
20 
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For which drawings the same phenomenon is verified remains to 
be seen. The reader is invited to experiment and to find a general 
answer. 

Figure 1.16 

In the fo llowin g section a possible answer will be presented. 

1,3 So me th eo rems about smooth and monolinear mirror line 
des igns 

IlIfrodllCliofl 

A whole class of drawings to whi ch the ' chased chicken' and 
'lion's stomach' des igns belong, which we met in the previous section, 
satisfies a common construction principle. The curves involved may 
be generated in the following way: each of them is the smooth vers ion 
of a closed polygonal path described by a light ray emitted from the 
point A (0, 1) (see Figure 1.17a). The light ray is refl ected on the sides 
of the circumscribed rectangle of the grid, and on its way through the 
grid it encounters double-sided mi rrors. These mirrors are placed 
vertically in the center between two hori zontal neighbori ng grid points 
and horizontally in the center between two vertical neighboring grid 
points . Figure 1.17 shows the generation of the ' chased ch icken ' 
drawing. 

In the following we will defi ne the designs that satisfy the 
aforementioned construct ion principle and demonstrate a few theorem s 
which reveal some properties of th is class of designs. 

21 
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A 

A 

A 
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a 

b 

, 
Figure 1.17 

• 

• 
• 
• 
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• 
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Definitions 

Consider a rectangular grid RGlm,nl with vertices (0,0), 
(2m,0) , (2m,2n) and (0,2n) and havi ng as points (2s-I ,2t-I), where s = 
I, ... , m and t = 1, ... , n, and III and II two arbitrary natural numbers . 

Figure 1.18 displays the example RG{5,3}. 

• 

• 

• 

• • • 

• • • 

• • • 

RG[ 5,3[ 
Figure 1.18 

• 
• 
• 

The intersection of RG[m,nJ with the set of straight lines 

y =± x+(2u+ I), 

where u represents an arbitrary whole number, will be called a 
diagonal design Dim, nl . 

Figure 1.19 shows the examples D[5,3] and 0[6,3]. 

a b 
Figure 1.1 9 

A diagonal design may be considered as the union of the 
" polygona l mirror lines" which are traced by light rays emitted from 
the points (2s-1 ,0) in the direction of (2s, I), and wh ich are reflected on 
the sides of the rectangle (s = 1, 2, .. . , m). 

We call a diagonal des ign p-linear, if it is composed of p distinct 
closed " polygonal mirror lines" . 

For example, 0[6,3 ] is 3-linear and 0[5,3] is monolinear (1 -
li near). 

21 



When horizontal and vertical double-sided mirrors of un it length 
are placed in a diagonal design in the midpoints between horizontal 
and vertica l neighboring grid points, we call it a polygonal mirror 
lines des ign . 

A polygonal mirror lines design may be considered as the union 
of the polygona l paths described by light rays emitted from the points 
(2s-I,2t) in the direction of (2s,2t+ I ), and which are reflected on the 
mirrors and the sides of the rectangle (s = I ,. ,., m; t = I, .. " n- I). We 
call a polygonal mirror lines design I)-linear, if it consists of p distinct 
closed polygonal paths , 

A polygonal mirror lines design will be called regular when all 
mirrors between horizonta l neighboring points are always in the 
vertical position and when, at the same time, all mirrors between 
vertical neighboring points are always in the horizontal position: 

always . I. 0 ' 

• 
• 

and never _ - _ 
• 

nor I 
• 

When all polygona l elements of a pol ygonal mirror lines design 
are transformed into smooth curve e lements, in agreement wi th the 
transformation rules represented in Figure 1.20, we will call the result 
a smooth minor lines design . 

a 

c 

Transformation rules 
Fi gure 1.20 

b 

d 

Inversely, we may consider a polygonal mirror lines design as the 
' rectification' of a smooth mirror lines design. Figure 1.21 presents 
examples. 

24 
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a: regular, 3-linear b: non-regular, 2- linear 

c: regular, monolinear d: non-regular, monolinear 
Figure 1.21 

Consider now the unit squa res of the initial rectangular grid 
RG[m,n], that is, the squares whose vertices have the coordinates 
(p,q), (p+ l ,q), (p+ l ,q+ l ) and (p,q+ I), where p = 0,1, .. 0, 2m- l and q = 

0, I , ... , 2n-l . Each of these un it squares has one uni que grid point as 
one of its fo ur vertices. The un it sq uares may be enumerated, as 
Fi gure 1.22 illustrates, in dependence of their position relative to the 
corresponding grid point (2s-I ,2t- 1). Th is enumeration will be called 
Q -en umer ation (mod ulo 4). 

t 

, 
odd even 

odd 
3 2 2 3 

• • 
0 1 1 0 

0 1 1 0 even • • 
3 2 2 3 

Q-enumeration (modulo 4) 
Figure 1.22 

25 



Fi gure \.23 shows the Q-enumeration of the rectangu lar grids 
R[4,3 ] and R[5,3J. We note that the same number is attributed - as a 
consequence of the definition - to the four unit squares, which belong 
to the same sq uare of neighbori ng grid points. 

Q-enumeration ofRG[4,31 and RG[5 ,3] 
Fi gure 1.23 

Consider a monolinear, smooth mirror lines design, or, in brief, a 
(rectangle-filling) mirror curve. Let us assume that the closed curve is 
gone through in the following way: one starts in the un it square [A01 

with vertices (1 ,0), (2 ,0) , (0, I) and (I , I ). Let Ag be the gth attained 

unit square through whi ch the curve goes. As the mirror lines design 
is monol inear, the curve passes through all un it squares of the 
rectangular grid. This makes it possible to introduce a second 
enumeration of the unit sq uares: the p-nllmber of the unit square Ag is 

defined by g modulo 4, that is 
P(Ag} = g mod 4. 

Figure 1.24 gives an example. 

Now we wi ll demonstrate the (surpri si ng) theorem that states that 
- ill the case of monolinear, regular and smooth mirror lines designs 
- the two enumerations are equal, that is 

Q(Ag) = P(Ag} for g=0, 1, .. . ,4mn-l. 

To facil itate the demonstration, we first prove the following 
auxi liary theorem: 

Theorem ,I : For monoiinear, regular and smooth mirror lines 
designs, the following equality Q(Ag+2) = Q(Ag) +2 

(mod 4), holds for g = 0, I , ... , 4mn-\. 

26 
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a 

Proof: 

Example of a P-enumeration 
Figure 1.24 

b 

c 

Consider three unit squares through which the curve successively 
passes. When going through the three unit squares, the curve may 
encounter 0, 1, 2 or 3 mirrors. 1n this way, we may distingu ish five 
essentially different situations (see Figure 1.25). In each s ituation we 
have that the first (Ag) and the third (Ag+2) unit square, through 

which the curve passes, belong to diagonall y opposed grid point 
squares (see Figure 1.26). 
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". 

Figure 1.26 

In agreement with the definition of the Q-enumeration, Lt follows 
immediately that 

Q(Ag+Z) ~ Q(Ag) +2 (mod 4), 

as we wished to prove. 

Theorem 2: For monolinear, regular and smooth mirror lines designs 
the following equality Q(Ag} = P(A g} holds for g = 0, 

1,._ ., 4mn- 1. 

Proof: 

In accordance with the definitions of the P-enumeration and of 
the Q-enumcration we have: 

(1) P(AO) ~ O ~ Q(AO) and 

(2) peA l) ~ 1 ~ Q(A ,) . 
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For g = 2, 3, ... , 4mn- l , we have 
P(Ag) ~ g (mod 4) and 

P(Ag+2) = g+2 (mod 4). 

Therefore, 

(3) P(Ag+, ) ~ P(A g) +2 (mod 4) 

In agreement with ( I ), (2) and (3) and theorem I , it follows that 

Q(Ag) = P(Ag) for g = 0, I .... , 4mn-l , 

as we wished to prove. 

C orollary I : Two neighboring parallel line segments of a 
monolinear, regular and smooth mirror lines design are 
always traversed in opposite directions. 

Proof: 

If the straight line segment I is traversed in the direction a*b , 
where a*b = 0* I , 1 *2, 2*3 or 3*0 (mod 4), the line segment II is also 
traversed in the direction a*b. that is. in the opposite direction (see 
Figu re 1.27a) . 

If the curved line segment m (see Figure 1.27b) is traversed in 
the direction a*c (upwards), this implies, by consequence of the 
definition of the Q-enumeration, that a=3 and c=O or a= 1 and c=2. In 
the first case we obtain b=2 and d= l , that is, the curved li ne segment 
IV is traversed in the direction d*b (downwards). In the second case 
b=Q and d=3 hold and the curved line segment IV is traversed in the 
direction d*b (downwards) . In other words, in both cases the 
neighboring curved line segments are traversed in opposite directions. 

I II 

, , 

a 
Figure 1.27 
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COI'ollary 2: Two crossing segments of a monol inear, regular and 
smooth mirror lines design are always traversed in the 
same direction (that is, both upwards or both 
downwards). 

Proof: 

II 
~ 

Fi gure 1.28 

If the segment I is traversed in the direction a-b, the segment [J 

can only be traversed in the same direction (see Figure 1.28). In the 
case of b-a, the reasoning is the same. 

Th eorem 3: Take a monolinear, regular and smooth mirror lines 
design. If a crossing between two horizontal 
neighboring grid points is verticall y eliminated (see 
Figure 1.29), a 2-l inear mirror lines design is obtai ned. 

10 

Situation before the 
elimination 

Situation after the 
elimination 

Vertica l elimination ofa crossing 
between two horizontal neighboring grid points 

Figure 1.29 
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Proof: 

If one starts the course of the monolinear mirror curve from the 
crossing (A) to be eliminated onwards, climbing to the right (see 
Fi gure 1.29), then, continuing the course, one returns to A, in 
agreement with Corollary 2, from below on the right hand side; passes 
then through A and returns finally from be low on the left hand side to 
A. This implies, if the curve is 'cut ' in A, that two closed lines are 
obtained . 

Figure 1.30 presents examples. 

Figure 1.30 

On symmetry grounds we ha ve: 

C Ol'ollary 3: Take a monolinear, regular and smooth mirror lines 
design. If a crossing between two vertical neighboring 
grid points is horizontally eliminated (see Fi gure 1.31), 
a 2-linear mirror lines design is obtained. 

Situation before the el imination Situation after the elimination 

Horizontal elimination of a crossing 
between two vertica l neighboring grid points 

Figure 1.31 

, 
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Them'em 4: Consider a monolinear, regular and smooth mirror lines 
design. If a crossing between two horizontal 
neighboring grid points is horizontally eliminated, the 
mirror lines design thus obtained also is monolinear. 

,-" 
I , 

I , 

,-, , , 
I , 

,-" 
I , 

I • 

,-, , , 
A. I , , , I 

, , ... I 

"-' "-' "-' '-' 
a: Situation before the elimination b: Situation after the elimination 

Proof: 

Horizontal elimination ofa crossing 
between two horizontal neighboring grid points 

Figure 1.32 

Let us observe the given mirror lines design and traverse it from 
the crossing (A) to be eliminated on, upwards to the right (see Figure 
1.32a). 

Once more we have, in agreement with Corollary 2, that one 
returns to A from below on the right hand side. 

Conversely, if we traverse the mirror lines design, starting in A, 
going downwards to the left, one returns to A once again from below 
on the left hand side, in agreement with Corollary 2. 

Let us now eliminate horizontally the crossing A and traverse the 
mi rror lines design from X (see Figure 1. 32b) onwards in the indicated 
direct ion ( •• » . As the initial mirror lines design was monolinear, at a 
given moment one traverses the arc below A, from the right to the left. 
The monolinearity of the initial mirror lines design implies, taking into 
account Corollary 2, that one fina lly returns from the left to the start 
point X, having gone through the whole mirror lines design. Thus the 
proof of the theorem has been concluded. 

For reasons of symmetry we have: 

Corollary 4: Consider a monolinear, regular and smooth mirror lines 
design. If a crossing between two vertical neighboring 
grid points is vertically eliminated, the mirror lines 
design thus obtained is also monolinear. 
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Figure 1.33 gives examples. 
It should be noted that the resulting new mirror lines designs are 

not regular and, therefore, the same theorem cannot be applied to 
them. 

Figure 1.33 

1.4 Enumeration modulo 2 and Lunda-designs 

Theorem 2 gives info rmation about the distri bution of the O's , 
1 ' s, 2 ' s and 3 ' s when one enumerates modulo 4 the unit sq uares 
through which a regular (monolinear) mirror curve successively 
passes_ On the basis of this distri bution we may deduce the 
distribution of O's and I ' s when we count them modulo 2 instead of 
modulo 4. Figure 1.34 gives an example. 

Figure 1.34 

Coloring the unit squares with number I black, and the ones with 
number 0 white, black-and-wh ite des igns are obtained of the type 
illustrated in Figure 1.35, which corresponds to the example of the 
previous figure_ 
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:p 

:tt t-
Fi gure 1.35 

Non-regu lar mirror curves generate other distributions of O's, ['5, 

2'$ and 3'$ and other black-and-white designs. Figure J .36 presents 
examples of dimens ions 4 by 3: 

1, Position of the mirrors; 
2. Corresponding mirror curves; 
3. Corresponding 0, \ , 2 and 3 designs; 
4. Corresponding black-and-white designs. 

As th is type of black-and-white design was discovered in the 
context of analyzing sand drawi ngs from the Cokwe, who 
predominantly inhabit the northeastern part of Angola, a region called 
Lunda, I have given them the name of Lunda-designs. For the first 
time I presented Lunda-designs in a paper published in 1990. 

• • • 
• • 
•• • 

" 

,3 0' 
Figure 1.36 (first part) 
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• • I • 
• • • 
• • • • 

bl b2 

b3 b4 

• • • • 
• • • • 
• • • • 

,1 ,2 

,4 

• • • 
• • • 
• • • 

d1 d2 

d3 d4 

Figure 1,36 (continued) 
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• • 
• • 
• • 

oj ,2 

e3 e4 

• • 

• • 

• • 
fl f2 

f3 f4 

• • 
• • 
• • 

gl g2 

83 g4 

Figure 1.36 (continued) 
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• • I • 
• • • 
• • • • 

hi h2 

h3 h4 

Figure 1.36 (conclusion) 
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Chapter 2 

ON LUNDA-DESIGNS AND SOME OF THEIR 
SYMMETRIES 1 

2,1 Mirror designs and mirror curves 

When analyzing sand drawings from the Cokwe (Angola) [cf 
Gerdes, 1993 -94] and threshold designs from the Tamil (South lnd ia) 
[cf Gerdes, 1989; 1993 -94, chap. II ; 1995], I found that several of 
them (see the tw o examples in Figure 2.1 ) might be generated in the 
followi ng way. 

Cokwe sand drawi ng 
a 

Fi gure 2. 1 

Tami l threshold design 
b 

Consider a rectangular grid RG[m,n] with vertices (0,0), (2m,0), 
(2m,2n), and (0, 2n) and havi ng as poi nts (2s- l , 2t-I), where s = I , ... ,m, 
and t = I , ... ,n, and m and n two arbitrary natural numbers. Figure 2.2 
displays RG[6,5 ] and RG[5,5 ]. 

1 Publ ished in the electronic journal : Visual Mathemafics, Belgrade, 
Vol. I, No. I , 1999. 
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• • • • • • • • • • • 

• • • • • • • • • • • 
• • • • • • • • • • • 
• • • • • • • • • • • 
• • • • • • • • • • • 

RG[6,5) RG[5,5) 
Figure 2.2 

A curve like thai shown in Figure 2.1 is the smooth version of a 
closed polygonal path described by a light ray emitted from the point 

(1,0) at an angle of 45° to the sides of the rectangular grid RG[m,n] 
(see the example in Figure 2.3 ). 

• • • • • • 
• • • • • • 
• • • • • • 
• • • • • • 

• • • • 
(1,0) 

Emission of a light ray from the poi nt (1 ,0) 
Figure 2.3 

The ray is ret1ected on the sides of the rectangle and on its way 
through the gri d it encounters double-sided mirrors, which are placed 
horizontally or vertically, midway, between two neighboring grid 
points (see Figure 2.4) . 
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Figure 2,5 shows the position of the mirrors in order to generate 
the two curves of Figure 2.1 . 

• • • • • • • I • • • • - - - -
• I • • I • • I • • I • • • • - -
• • • • • • • • • • • - -
• I • • I • • I • • • • • I • - - - -
• • • • • • • • • • I • 

a b 
Mirror designs generating the curves of Figure 2.1 

Figure 2, 5 

Both curves are rectangle-filling in the sense that they 'em brace ' 
all grid points. Such curves we will call (rectangle-filling) miiTor 
curves . The rectangular grids together with the mirrors , which 
generate the curves wi ll be called mirror designs. Figure 2.6a 
disp lays the mirror design that leads to the Celtic knot design in Figure 
2.6b (cf Gerdes, 1993 -94, chap. 12). 

• • • • • 
I 

• • • • • - - - -
• • • • • 

I 
• • • • • 

a b 
Example of a Celtic knot design as a mirror curve 

Figure 2, 6 

Gerdes (cf 1990, 1993-94, chap. 4-8) analyzes some properties 
and classes of mirror curves and lablan (1995) establishes links 
between mirror curves and the theory of cellular automata, Polya 's 
enumeral10n theory, com binatorial geometry, topology, and knot 
theory. 
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• • • • • • 
I • • • • • • · . .-. . . 

• • • • • • 
I 

• • • • • • 
Mirror design , 

Starting the coloring 
c 

Final black-and-wh ite pattern 
(grid points unmarked) 

e 

Corresponding mirror curve 
b 

Final black-and-white pattern 
(with the grid points marked) 

d 

- .. 
I 

I 
• -

Final black-and-white pattern 
(border rectangle unmarked) 

f 
Example of a black-and-white coloring 

Figure 2.7 

2,2 The discovel'y of Lunda-designs 

Let us now consider a rectangle-filling mirror curve. It passes 
precisely once through each of the unit squares of the rectangular grid. 
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This enables us to enumerate the unit squares through which the curve 
successively passes, I, 2, 3, 4, ... .4mn. Enumerating them modulo 2, 
i.e. 1,0, 1,0, ... ,0, a (I ,O)-matrix is obtained, or, equivalently, by 
coloring the successive un it squares alternately black (= I) and white 
(= 0), a black-and-white design is produced. Figure 2.7 presents an 
example of the generation of such a black-and-white design. 

As thi s type of black-and-white design was discovered in the 
context of analyzing sand drawings from the Cokwe, who 
predominantly inhabit the northeastern part of Angola, a region called 
Lunda, I have given them the name of Lunda-designs. 

2.3 Examples 

Figure 2.8b displays a sequence of nine IOxll Lunda-designs 
generated by introducing, step-by-step, more horizonta l mirrors along 
the principal diagonal (Figure 2.8a). Figure 2.9b shows what happens 
if we introduce the mi rrors in pairs (Figure 2.9a). Th is time, the 
resulting Lunda-designs have a two-color symmetry: a half-turn about 
the centre interchanges wh ite and black . Th is also happens with the 
Lunda-designs in Figure 2.10. 

Figu re 2.11 a shows a sequence of three mirror designs, of which 
the second and third generate the same Lunda-design (F igure 2. 11 b). 
These Lunda-designs admit vertica l and horizontal reflections. The 
first preserves the colors, whereas the second reverses black and white. 

Figure 2.12a displays three mirrors designs wi th two-fo ld 
rotational sym metry. The Lunda-design generated by the first is also 
invariant under a half-turn about its centre. In the second and third 
cases, a half-turn around the respective centers reverses the colors. 

The symmetrical mirror designs in Fi gure 2.1 3a generate Lunda­
designs with horizonta l and vertical reflections, which interchange 
black and white. 

(Many) Lunda-designs seem to me - and to colleagues and 
students to whom I have shown them - aesthetically appealing. 
Where do possible reasons for this li e? What do all these Lunda­
designs have in common? Wh ich characteri stics? Do they possess 
specific symmetries? 
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bl b2 b3 

b4 bS b6 

b7 b8 b9 

Figure 2.8 (second part) 
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Figure 2.1 0 
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2.4 General sy mmetry lu'operties 

Searching for the common characteristics of Lunda-designs (of 
dimensions mxn), the following symmetry properties were observed 
and proven: 

(i) In each row there are as many black as white un it squares; 
(ii) In each column there are as many black as white unit squares; 
(iii) Of the two border unit squares of any grid point in the first or last 

row, or in the first or last column, one is always white and the 
other black (see Figure 2. 14); 

Possi ble border situations 
Figure 2. 14 

(iv) Of the fOllT unit squares between two arbitrary (vertical or 
horizonta l) neighboring grid points, two are always black and two 
are white (see Figure 2_15)_ 

fI 
Possible situations between vertical and 

horizontal neighborin g grid points 
Fi gure 2. 15 

Properties (i) and (ii) guarantee a gl obal equilibrium between 
black and white unit squares for each row and column. Properties (i ii) 
and (iv) guarantee more local equilibriums_ 

From (i) it follows that the number of black unit squares of any 
row is equal to 111 , and from (ii) that the number of black unit squares 
of any column is equal to II . 

• 

50 

Inversely, the following theorem can be proven: 

any rectangular black-and-white design that satisfies the 
properties (i), (ii), (iii), and (iv) is a Lunda-design. 
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In other words, for any rectangular black-and-white design that 
satisfies the properties (i), (ii), (iii), and (iv) , there exists a (rectangle­
filling) mirror curve that produces it in the discussed sense (cf. Figure 
2.7). Moreover, in each case, such a mirror curve may be constructed. 

The characteristics (i), (ii), (iii), and (iv) may be used to define 
Lunda-designs of dimensions mxn (we may abbreviate: rnxn Lunda­
designs) . In fact, it may be proven that the characteristics (iii) and (iv) 
are sufficient for this defin ition, as they imply (i) and (ii) (see 
Appendix I) . 

2.5 Special classes of Lunda-designs 

Especially attractive are Lunda-designs, which display extra 
symmetries. 

Figure 2.16 

Figure 2.16 presents the six possible 3x3 Lunda-designs [being 
white (= 0) the color of the first unit square with vertices (0,0), (1,0), 
(1 , 1), and (O, I)J that admit reflections in the diagonals that preserve 
the colors and vertical and horizontal reflections interchanging black 
and wh ite. By consequence, a half-turn about the centre preserves the 
colors and a quarter-turn reverses the colors. In other words, these 
fin ite designs are of the type d.J' (for this notation, see e.g. Washburn 
& Crowe, p. 68). 

Figure 2.17 displays the 4x4 Lunda-designs and Figure 2.18 the 
5x5 Lunda-designs, which have the same symmetries. Figure 2.19 
presents examples of mirror designs, which generate such 5x5 Lunda ­
designs (the numbers ind icate the corresponding Lunda-designs III 

Figure 2.18). 
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Figure 2.17 

52 

C JPYnghted matanal 



I 2 3 4 

5 6 7 8 

9 10 I I 12 

13 14 I 5 16 

I 7 18 19 20 

Figure 2. 18 (First part) 
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21 22 23 24 

25 26 27 28 

29 30 3 I 32 

33 34 35 36 

37 38 39 40 

Figure 2. 18 (Continued) 
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41 42 43 44 

45 46 47 48 

49 50 51 52 

53 54 55 56 

57 58 59 60 

Figure 2.18 (continued) 
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77 78 79 80 

Figure 2.18 (continued) 
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Figure 2. 18 (Final part) 
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Figure 2. 19 (First pa rt) 
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Figure 2.19 (Second part) 

When we join fo ur Lunda-designs of the type d4', a new Lunda­
design of the same type is obtained (see the example in Figure 2.20). 

b 
Figure 2.20 

Figure 2.21 displays examples of SxS Lunda-designs - together 
with corresponding generating mirror designs - • which, although 
they do not have symmetry axes, do possess the property that a 
qua rter-turn about the respective center reverses the colors, and 
consequently a half-turn preserves the colors (type c../ '). 
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Figure 2.2 1 (First part) 
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Figure 2.21 (second part) 

Figure 2.22 presents examples of 9x9 Lunda-designs of the type 
d..J· together with corresponding generating mirror designs_ 
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Figure 2,22 (second part) 

62 

C JPYnghted matanal 



0 0 0 0 0 0 0 

I I I I ._e_. 0 0 0 0 

I I 
0-0 0 ._._e_e 

I 
0-0 0 0 0 0-0 

I .-e-e-. 0 0-0 

I I 
0 0 0 0 ._e_. 

I I I I 
0 0 0 0 0 0 0 

, I bl 

0 0 0 0 0 0 0 

I I I I 
0 0-0 0 0 0-0 

I I 
0-0 0 ._e_e_. 

I 
0-0 0 0 0 0-0 

I ._e_e_. 0 0-0 

I I 
0-0 0 0 0-0 0 

I I I I 
0 0 0 0 0 0 0 

.2 b2 

· .-. . --
.-e-e-. 

· ._e . 
• • • • 
. .-. . - -._e_e_. 
--· . . . .-. . 

,3 b3 
Figure 2.23 

Figure 2.23 presents examples of 7x7 Lunda-designs of the type 
c-l '. Examples of 9x9 and 13x 13 Lunda-designs of the same type c-l' 
are displayed in Figures 2.24 and 2.25. Two examples of9x9 Lunda­
designs, which admit ret1ections in their diagonals are given in Figure 
2.26. 
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Figure 2.24 
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Fi gure 2.26 

2,6 Square Lunda-designs and fractals 

Square Lunda-designs may be used to bui ld up fracta ls, that is 
geometrica l fi gures with a built in self-simi lari ty (see e,g. Lauweri er) , 
Figure 2.27 shows the first three phases of building up a fractal on the 
base of a 2x2 Lunda-design of the type d4 ', The fractal itself admits 
only two reflections. Figure 2.28 presents the first two phases of the 
construction of a fracta l on the base of a 4x4 Lunda-des ign. 
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Figure 2.27 
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Figure 2.28 

2.7 Generalization of Lunda-des igns 

As Lunda-designs may be considered as matnces, It IS qUIte 
natural to define add ition of Lunda-des igns in terms of matrix 
addi tion : the sum of two (or more) matrices (of the same dimensions) 
is the matrix in which the elements are obtained by adding 
corresponding elements (see the example in Figure 2.29). 
68 
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1 0 1 0 0 1 1 0 
0 1 0 1 1 0 0 1 
1 0 0 1 0 1 1 0 
0 1 1 0 1 0 0 1 

+ 
1 0 1 0 1 0 '~ 0 0 1 1 0 1 0-i-
1 1 0 0 0 1 '~ 0 1 0 1 1 0 o 1 

--
1 1 

1 102 
2 1 -'..' ,-,2"-0,,,-,,-

D - 0 -
-1 -
- 2 -

Figure 2.29 

The sum of k rnxn Lunda-designs may be called an mxn Lunda­
k-design . The Lunda-k-designs inherit the following sym metry 
properties: 

(i) The sum of the elements in any row is equal to kill; 
(ii) The sum of the elements in any column is equal to kn; 
(iii) The sum of the integers in two border unit squares of any grid 

point in the first or last rows or columns is equal to k; 
(iv) The sum of the integers in the four unit squares between two 

arbitrary (vertica l or horizontal) neighbor grid points is always 
2k. [ 

1 If we define a Lunda-design not as a (0, I) - matrix, but as a (-I, I) -
matrix, these properties assume the following expressions: 
(i) The sum of the elements in any row is equal to 0; 
(ii) The sum of the elements in any colum n is equal to 0; 
(iii) The sum of the integers in two border unit squares of any grid 

point in the first or last rows or columns is equal to 0; 
(iv) The sum of the integers in the four unit squares between two 

arbitrary (vertical or horizontal) neighboring grid points is always 
O. 
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Once again, properties (i) and (ii) guarantee a global equil ibrium 
for each row and column. Properties (iii) and (iv) guarantee more 
local equilibriums. 

The characteristics (i) , (ii), (iii), and (iv) may be used to define 
Lunda-k-designs of dimensions mxn. The characteristics (iii) and (iv) 
are sufficient for th is definition, as they imply (i) and (ii) . 

• .. • • • 
.. • • • • 

Figure 2.30 (first part) 
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Figure 2.30 (second part) 

Figure 2.30 displays the 3x3 Lunda-3-designs of the type d.J " 
with white ( = 0) being the color of the first unit square [with vertices 
(0,0), (1 ,0), (1 ,1 ), and (0,1)]. Fi gure 2.31 shows an example of an 8x8 
Lunda-4-design . Figure 2.32 displays examples of a 4x4 Lunda-S­
design, an 8x4 Lunda-S-design, and a Sx3 Lunda-4-design. This time 
the color chosen for the first unit square is different from white. 
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4 • 

5 • 

1 • 

2 • 

3 • 

4 • 

Figure 2.31 

a 

b 

c 

Figu re 2.32 
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2.8 Hexagonal Luuda-designs 

Another way to expand the concept of Lunda-design IS 10 start 
with hexagona l grids instead of rectangular ones. Figure 2.33 displays 
two examples_ 

Figure 2.33 

Each grid point is surrounded by six unit triangles . Each border 
grid point has three unit triangles that touch the border (see Figure 
2.34a), and between n-vo arbitrary neighboring grid points, there IS 

a Iways a hexagon composed of six unit triangles (see Figure 2.34b). 

w 
, b 

Figure 2.34 

Suppose that to each unit triangle of a hexagonal grid we assign 
one of three colors (e.g. white, grey, and black). Then we obtain a 
th ree-colored design. If such a design satisfies the following two 
conditions: 

(i) To the three border unit triangles of any border grid point 
different colors are assigned; 

(ii) Of the six un it triangles ben-veen two arbitrary neighboring grid 
points, there are two of each color, 

we call it a hexagonal Lunda-design. 

Properties (i) and (ii) guarantee local equilibri um between the 
three colors. Figure 2.35b shows an example of a hexagonal Lu nda­
design. 
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a b 
Fi gure 2.35 

Figure 2.36 

Fi gure 2.36 presents seven hexagonal Lunda-designs that have a 

th ree-color rotational symmetry: a 60° rotation about the centre is 

consistent with color. A clockwise rotation by 60° moves all the white 
to coincide with all the grey, moves grey to black , and black 10 white. 
In other words, the three colors occupy equivalent parts of the design. 
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In the case of the four hexagonal Lunda-designs in Figure 2.37, a 

clockwise rotation by 1200 moves wh ite to grey, grey to black, and 
black to white. 

Figure 2.37 
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Chapter 3 

ON MIRROR CUR VES AND LUNDA-DESIGNS 1 

AhSlracl 
Some aspects of a class of cUlVes that may be considered as 

generated by mirror designs are presented, with examples from several 
cultures. These mirror curves generate in turn, interesting black-and­
white desi gns called Lunda-design s. The paper presents examples of 
these, discusses some of their properties and suggests generalizations 
of the concept. 

3,1 M irror des igns and mirror curves 

Storytellers among the Cokwe and neighboring peoples in eastern 
Angola and northwestern Zambia were used to illustrate their fables 
with standard ized drawings in the sand. Such a drawing consists of a 
line fi gure that embraces all the points of an orthogonal grid of 
equid istant points. When analyzing th is tradition, I found that several 
sand drawings (see the examples in Fi gure 3. I) may be generated in 
the following way [Gerdes, 1993, chap. 61. 

a b 
Examples of Cokwe sand drawings 

Figure 3. I 

I Published in: Compllfers and Graphics, An inlernalional )olll1lal of 
sy.\'femS & applicalions in complller graphics, Oxford, 1997, Vol. 21 , 
N" 3, 371-378. 
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Consider a rectangular grid RG[m,n] with vert ices (0,0), (2m,0), 
(2m,2n), and (0,2n) and having as points (2s-l, 2t-I), where s= I ,. _.,m, 
and t= 1, ... ,11 , and fII and n are two arbitrary natural numbers (see the 
examples in Figure 3.2). 

• • • • 
• • • • 

• • • • 

RG[4,3 ] 
a 

• • • • • 
• • • • • 
• • • • • 
• • • • • 

RG[5,4] 
b 

Rectangular grids 
Figure 3.2 

• • • • • • 
• • • • • • 
• • • • • • 
• • • • • • 
• • • • • • 

RG[6,5 ] 
c 

A curve like that shown in Figure 3.1 a is the smooth version of a 
closed polygonal path described by a light ray emitted from the point 
(1,0), making an angle of 45 degrees with the sides of the rectangular 
grid RG[m ,n). The ray is retlected on the sides of the rectangle and on 
its way through the grid it may encounter double-sided mirrors, which 
are placed horizontall y or verticall y in the centre between two 
(horizontal or vertical) neighboring grid points. Figure 3.3 shows the 
position of the mirrors in order to generate the curves of Fi gure 3. 1. 
These curves are rectangle-filling in the sense that they ' embrace' all 
the grid points . Such curves we wi ll call (rectangle-filling) mirror 
cllrves. The rectangular grids together with the mirrors, which 
generate the curves will be called mirror designs. 

• 
• • I • • • 
• • • • • 
• • I • • • 

a 
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• • • • - -
• • • • - -
• • • • - -
• • • • 

b 
Mirror designs 

Figu re 3.3 

r-------, 
• • • • • • - -
• I • • I • • I • - -
• • • • • • - -
• I • • I • • I • - -
• • • • • • 

c 
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Mirror curves may also be found in other cultures. For instance, 
Figure 3.4a l , a2 and a3 display the mirror designs that lead to an 
ancient Egyptian scarab design (Figure 3.4bl), to the threshold design 
from the Tamil (Southern India) in Figure 3.4b2 and to the mosque 
decoration in Fi gure 3.4b3 (cf. [Gerdes, 1989], [Gerdes, 1993, chap. 9, 
I I]; [Gerdes, 1995]; [Hessemer, pI.46]). 

• I • I • I • I • 
• • • • • 

• I • I • I • I • 
Ancient Egyptian desi gn 

a I bl 

• • • • • -
• • • I • I • -
• • • • • -
• I • I • • • -
• • • • • 

Tamil des ign 
a2 b2 

- -I- -I- -I- -

,3 
Mosque ornamentation in Cairo 

b3 
Examples of mirror curves in various cultures 

Figure 3.4 

Gerdes (\ 990; 1993, cha p. 4-8) and lablan (1 995, 1996) analyze 
several properties and classes of mirror curves. lablan also establishes 
links with the theory of cellular automata, Polya ' s enumeration theory, 
combinatorial geometry, topology, and knot theory. 
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3.2 Regular mirror curves 

The mirror curves in Fi gures 3. I and 3.4 are reglllar in the sense 
that in the corresponding mirror designs the horizontal mirrors are 
always in the centre between vertically neighboring grid points, and 
the vertical mirrors are always in the centre between horizontal 
neighboring grid points. Regular mirror curves possess some 
interesting properties, such as the following. 

a b 

- + -

+ - + 
- + -

+ - + 
c d 

Example of enumerating the unit squares modulo 4 
Figure 3.5 

+ 
-

+ 
-

Consider a rectangle·filling, regular mirror curve. It passes 
precise ly once through each of the unit squares of the rectangu lar grid. 
This enables us to enumerate the unit squares through which the curve 
successively passes I , 2, 3, 4, ... ,4mn. Enumerating them modulo 4, 
I.e. I , 2, 3, 0, I, 2, 3, 0, ... a (I , 2, 3, O)-matrix is obtained. When we 
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start the enumeration with the unit square with vertices (0,0), (1 ,0), 
(1 , I), and (0,1), we find that the four unit squares around any grid 
point are always numbered clockwise (negative rotation) or counter­
clockwise (positive rotation) I, 2, 3, 0. Moreover, positive and 
negative rotations alternate like the checkers of a chessboard (see the 
example in Figure 3.5). When we count the unit squares modu lo 2, i.e. 
1,0, 1, 0, 1,0, etc., a ( I,O)-matrix is obtained, or, similarly, by 
coloring the successive unit squares alternately black (= I) and white 
(= 0), a black-and-white design is produced. Figure 3.6 presents the 
(I,O)-matrix and the black -and-white design, which correspond to the 
mirror curve in Figure 3.5a (For proofs of these theorems, see Gerdes, 
1993, chap. 6; cf. chap. I). 

(0, I)-matrix 
a 

Black-and-white des ign 
(with the border rectangle and the grid 

points unmarked) 
b 

Corresponding (0, I )-matrix and black-and-white-design 
Figure 3.6 

• I • . - . 
• I • 

a b , 
Ancient Egyptian scarab ornamentation (b) with correspond ing mirror 

design (a) and black-and-wh ite design (c) 
Fi gure 3.7 
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3,3 Non-regular mirrOl' curves 

The mirror curves in Figure 3.7b and 3.8b which represent an 
ancient Egyptian scarab ornamentation (grid points added, cf. (Gerdes, 
1993, chap. 9] and [Petrie, 1934, pLlX, n0178]) and the structure of 
two Celtic knot designs (Bain, p.138 , 45] are not regu lar: in the first 
case there ex ists one horizontal mirror between two horizontal 
neighboring grid points (see Figure 3.7a); in the second case there 
exist two vertical mirrors between vertically neighboring grid points; 
and in the third case there are both horizontal mirrors between 
hori zontally neighboring points, and vertical mirrors between 
verticall y neighbori ng points (see Figure 3,8a). Figure 3,8c shows the 
black-and-wh ite designs these mirror curves produce when we color 
the successive unit squares through which the curves successively pass 
alternately black and white (if we start the coloring at any other unit 
square, the final design is either the same or its negative). 

• • • • • • 
I I 

• • • • • • • • • • • 
I I I 

• • • • • 0-0-0-0-0-0 

I I 
• • • • • • • • • • • 

I I I 
• • • • • • • • • • • 

a I .2 

bl b2 

cl c2 
Two Celtic knot designs (b) with corresponding mirror designs (a) and 

black-and-white designs (c) 
Figure 3.8 
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Figures 3.9 and 3, 10 present further examples of non-regu lar 
mirror designs. and the mirror curves and corresponding black-and­
white designs they generate. Knowing onl y the positi on of the mirrors 
it is difficult to conjecture how the corresponding black-and-white 
design will look . 

• • • • • • • • • • 
1 1 .-. • • .-. • • .-. 

1 1 
• • • • • • • • • • 

1 1 .-. • • .-. • • .-. 
1 1 

• • • • • • • • • • • • • • • • 
1 1 1 .-. • • .-. .-. • • .-. • • .-. 

1 1 1 
• • • • • • • • • • • • • • • • 

1 1 1 .-. • • .-. .-. • • .-. • • .-. 
1 1 1 

• • • • • • • • • • • • • • • • 

,I ,2 

bl b2 

cl c2 
Exam pl es of non-regular mirror designs and of the mirror curves and 

Lunda-designs they generate 
Figure 3.9 
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0 0 0 0 0 0 0 0 0 

0-0 0 0 0 0 0 0 0 

1 
1 0 0 0 0 0 0 0 0 0-0 0 0 0 0 0 0 

0-0 0 0 0 0 0 0 0 0-0 0 0 0 0 0 

1 
1 

1 
0 0-0 0 0 0 0 0 0 0 0-0 0 0 0 0 

0 0 0-0 0 0 0 0 0 0 0 0-0 0 0 0 

1 1 
0 0 0 0-0 0 0 0 0 0 0 0 0-0 0 0 

0 0 0 0 0-0 0 0 0 0 0 0 0 0-0 0 

1 
0 0 0 0 0 0-0 0 0 0 0 0 0 0 0-0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

,I a2 

bl b2 

,2 
Further examples of non-regular mirror designs and of the mirror 

curves and Lunda-designs they generate 
Figure 3_10 



As thi s type of black-and-white design was discovered in the 
context of analyzing sand drawings from the Cokwe, who 
predominantly inhabit the northeastern part of Angola, a region called 
Lunda~ we have given them the name of Lllnda-designs. (Many) 
Lunda-designs seem to me - and to colleagues and students to whom 
I have shown them - aesthetically appealing. Where do possible 
reasons for thi s lie? What characteristics do Lunda-designs have in 
com mon? 

3.4 Properties of Lunda-designs 

Searching for the common characteristics of Lunda-designs (of 
di mensions rnxn), the following symmetry properties were observed 
and proven [see Appendix I]: 

(i) In each row there are as many black as white unit squares; 
(ii) In each column there are as many black as white unit squares ; 
(iii) Of the two border unit squares of any grid point in the first or 

last row, or in the first or last col um n, one is always whi te and 
the other black (see Fi gure 3. 11 ); 

Possible border situations 
Figure 3. 1 I 

(i v) Of the four unit squares between two arbitrary (vertical or 
horizonta l) neighboring grid points, two are a lways black and 
two are white (see Fi gure 3. 12). 

Poss ible situations between vertical and horizontal 
neighboring grid points 

Figure 3. I 2 



Properties (i) and (ii) guarantee a global equilibrium benveen 
black and white unit squares for each row and column. Properties (iii) 
and (iv) guarantee more local equilibriums. 

From (i) it follows that the number of black unit squares of any 
row is equal to m, and from (ii) that the number of black unit squares 
of any column is equal to II. 

• 

Conversely, the following theorem can be proved [see Appendix 

any rectangular black-and-white design that satisfies the 
properties (i), (ii), (iii), and (iv) is a Lunda-design. 

In other words, for any rectangular black-and-white design that 
satisfies the properties (i), (ii) , (iii), and (iv), there exists a (rectangle­
fill ing) mirror cUlVe that produces it in the discussed sense. Moreover, 
in each case, such a mirror curve may be constructed. 

The characteristics (i) , (ii), (iii), and (i v) may be used to define 
Lunda-designs of dimensions mxn (in brief: IIIxn Lllllda-designs). In 
fact, it may be proven that the characteristics (iii) and (iv) are 
sufficient for this definition, as they imply (i) and (ii) . 

lxi, 2x I, 3x l and 4x l Lunda-designs 
Figure 3. 13 

3.5 Classes of Lunda-d esigns 

Figure 3.13 shows all distinct lxi , 2xl, 3xl and 4xl Lunda­
designs. We do not include designs that may be obtained from the 
ones presented by reflection, rotation, or by interchanging black and 
white. It is interesting to note that the Ixl Lunda-design symbolizes 
wisdom among the Akan populations in Ghana and Cote d' ]voire 
[Niangoran-Bouah, p. 2 10). 
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Figure 3.14 displays the 5 distinct 2x:2 Lunda-des igns and Figure 
3.15 the 3x2 Lunda-designs. 

2x2 Lunda-designs 
Figure 3. 14 

3x2 Lunda-designs 
Figure 3. 15 



Examples of symmetrical 6x6 Lunda-designs 
Figure 3.16 

Particularly visually attractive are Lunda-designs , which display 
extra symmetries. Figure 3. 16 presents examples of 6x6 Lunda­
designs, which admit reflections in the diagonals that preserve the 
colors, and vertical and horizontal reflections interchanging black and 
white. Figure 3. 17a2 presents a II x II Lunda-design with the same 
symmetries as the examples in Figure 3.16; Figure 3.17b2 displays a 
Ilxll Lunda-design that, although it does not have sym metry axes, 
possesses the property that a quarter-turn about the respective centre 
reverses the colors, and consequently a half-turn preserves the colors. 
Figures 3.17al and bl show mirror designs, which generate the 
respecti ve Lunda-designs. 
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• • • • • • • • • • • 
I • • • • • • • • • • • 
I 

• • • • • 0-0-0-0-0-0 

I 
• • • • • • • • • • • 

I • • • • • • • • • • • 
I • • • • • • • • • • • 

I 
• • • • • • • • • • • 

I 
• • • • • • • • • • • 

I 
0-0-0-0-0-0 • • • • • 

I 
• • • • • • • • • • • 

I 
• • • • • • • • • • • 

al a2 

• • • • • • • 0-0-0-0 

I I 
• • • • • • .-. • • • 
I I 
• • • • • • • 0-0-0-0 

I I 
• • • • • • • • • • • 

I • • • • • • • • • • • 
• • • • • • • • • • • 

• • • • • • • • • • • 
I • • • • • • • • • • • 

I I 
0-0-0-0 • • • • • • • 

I I 
• • • .-. • • • • • • 

I I 
0-0-0-0 • • • • • • • 

bl b2 
Examples of symmetrical 11 x 11 Lunda-designs 

Figure 3.17 

3.6 Generalizations 

The concept of Lunda-design may be genera lized or extended In 

various ways. In chapter 2 we showed, for instance, that it is possi bl e 
to bui ld up (muhicolor) hexagonal Lunda -designs by starting with 
triangular grids. Here we wi ll introduce Lunda-k-designs and circu lar 
and polyominal Lunda -designs. 



Lllnda-k-designs 

As Lunda -designs may be considered as matrices, it is quite 
natural to define addition of Lunda-designs In terms of matrix 
addition. The sum of k mxn Lunda-designs may be called a mXII 

Lllllda-k-desigl1. The Lunda-k-designs inherit the following symmetry 
properties: 

(i) The sum of the elements in any row is equal to km; 
(ii) The sum of the elements in any column is equa l to kn ; 
(iii) The sum of the integers in the two border unit squares of any 

grid point in the first or last rows or columns is equal to k; 
(iv) The sum of the integers in the four unit squares between two 

arbitrary (vertical or horizontal) neighbor grid points is always 
2k 
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a b 

c d 

D = 0 • = 2 

Examples of symmetrica l Lunda -4-designs 
Figure 3.18 



The characteristics (iii) and (iv) imply (i) and (ii), so they may be 
used to define mxn Lunda-k-design. Figure 3.18 displays examples of 
Lunda-4-designs. 

• • • • • • • • 
I I 

• • • • • • • • 
I 

• • • • • • • • 
I • • • • • • • • 

I I 
• • • • • • • • 

, b 

c 
Example of the transformation of a rectangu lar Lunda-design 

Figure 3.19 

Circular Lunda-designs 

Any Lunda-design may be topologically transformed as in the 
example shown in Figure 3.19. Property (iii) guarantees that, if one 
now joins the straight s ides (see Figure 3.20), property (iv) is still 
va lid. This leads us to the conception of circular Lunda-designs. 
Figure 3.21 presents examples of symmetrical SxS Lunda-designs 
together with the circular Lunda-designs they generate. 

91 



Circular Lunda-design corresponding 
to the rectangular Lunda-design in Figure 3, 19 

Figure 3.20 

If we curve any Lunda-des ign in space and join two opposite 
sides, we obtai n a black-and-white cylinder. By curving the cylinder 
and joini ng its opposite circles, we transform it into a black and white 
torus. Th is leads to the conception of cylindrical and torus Lunda­
designs. 

Polyominal Lut/da-designs 

In various cu ltures and historical periods there appear figures that 
may be considered as mirror curves, if we admit polyominal borders 
instead of only rectangular borders. A polyomino is a si mply 
connected set of equal-sized squares. For instance, Figure 3.22b 
shows the polyomino with grid points that leads to the mirror curve 
(there are no internal mirrors) in Figure 3.22a, This mirror curve 
appears among the Cokwe in Angola, in Japan as a crest design 
[Adachi, p.95] , in China as a lattice design [Dye, p. 99], among the 
Tamil in Southern India [Layard, p. 137] and also in Bhutan as a good 
luck symbol (W. Gibbs, personal communication, \990). Figure 3.22d 
displays the Lunda-design generated by the curve. 
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al a2 a3 a4 

bl b2 

b3 b4 

Examples of symmetrical SxS Lunda-designs together 
with the circular Lunda-designs they generate 

Figure 3.21 
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• • 

• • • • • 
• • I 

a b c d 

Example of the generation of a polyom inal Lunda-des ign 
Figure 3.22 

Figure 3.23 displays an ancient Egyptian scarab decoration 
[Petrie, 1934, pI. VII, nO 220] ; the polyamino in which it is inscribed; 
and the Lunda-design it generates . Figure 3.24 and 3.25 do the same 
fo r a Celtic knot design [Jones, pI. LXIV} and for another Tam il 
threshold design [Layard, p.137J . In the last case the artist also drew 
the polyominal border. The mirror curves in Fi gures 3.22, 3.23 , 3.24, 
and 3.25 may be classified as regular in the above-discussed sense. 

a 

• 
• • • 

• 
• • • 

• 

b c 

Polyominal Lunda-des ign generated by an 
ancient Egyptian scarab decoration 

Figure 3.23 

a b 

d 

Polyominal Lunda-design generated by a Celtic knot design 
Fi gure 3.24 
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• • 
• • • - -

• • • • • 
• • • • • • • 

• • • • • - -
• • • 

• 
, b 

c d 

Polyominal Lunda-design generated by a Tamil threshold desi gn 
Figure 3.25 

Figure 3.26a shows a Japanese crest design [Adachi , p.4 ; grid 
points added]. Th is time the mirror curve is not regu lar, as there are 
horizontal mirrors between horizontal neighboring grid points (see 
Figure 3.26b). By coloring the un it squares (see Figure 3.26c) through 
which the curve successively passes alternately black and wh ite, the 
Lunda-design in Figure 3.26d is obtained. This time the curve does 
not pass through the central square. In other words we constructed a 
Lunda-des ign on a polyamino with a hole. A similar, though more 
complicated si tuation (see Figure 3.27) occurs in the case of an ancient 
Mesopotam ian design (about 2800 s.c., cf [Petrie, 1930, pI. XLI]; 
[Gerdes, 1993, chap. I 0]). Ln fact the curve does not fill the whole 
polygonal region, leaving several holes uncolored ('grey' in Figure 
3.27c and d). 
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• • 

• .-. • 
I I 

• . - . • + • • 

a b c d 

Polyominal Lunda-design generated by a Japanese crest design 
Fi gure 3.26 

• • 
• • 

• • • • • 
I I 

• • e_e_e_. 

I I 
• • e_e_e_. 

I 
• • • 

• 
• 

a b 

c d 

Polyominal Lunda-design generated 
by an ancient Mesopotamian design 

Fi gure 3.27 

I 
• • 
• • 
• 

• • 
• • 
• 
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Fractal Lllflda-de.\igm' 

Square Lunda-designs may be used to build up fractal s, that is 
geometrical figures with a built in self-similarity, by replacing each 
unit square with the original Lunda-design. Figure 3.28 shows the first 
two phases of the bu ilding up of two fractals on the base of 3x3 
Lunda-des igns. 

a 

b 
Fi rst two phases of building up of two fractals 

on the base of 3x3 Lunda-designs 
Figure 3.28 

The methods discussed in this paper fo r the generation of mirror 
curves and various types of Lunda-designs can easily be adapted to 
computer graphical representation. 
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Chapter 4 

ON LUNDA-DESIGNS AND LUNDA-ANIMALS 

Fibonacci returns to Africa 

4.1 Introduction 

Lunda-designs are a certain type of black-and-white design. As 
they were discovered in the context of analyzing the properties of a 
class of curves (see the example in Fi gure 4.1) drawn in the sand 
among the Cokwe, who predominant ly inhabi t the north-eastern part of 
Angola, a region called Lunda, I have given them the name of Lunda­
designs (cf. Gerdes, 1990; 1993-94, chapters 4 and 6; 1996a , b). 

Figure 4. I 
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Consider an infinite grid having as points (2p, 2q), where p and q 
are two arbitrary whole numbers. An infinile Lunda-design may be 
defined as a black-and-white design with the following characteristi c: 

(i) Of the four unit squares (cells) between two arbitrary (vertical or 
horizontal) neighboring grid points, two are always black and 
two are wh ite (see Figure 4.2a), 

Figure 4.3 shows a finite Lunda-design. These finite Lunda­
designs also have a second general property: 

(ii) Of the two border unit squares of any grid point in the first or 
last row, or in the first or last column, one is always white and 
the other black (see Figure 4.2b). 
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Possible situations between vertical and 
horizontal neighboring grid points 

a 
Figure 2 

Possible border situations 
b 

Figure 4.2 
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Figure 4.3 

B 

Figure 4.4 

Polyominoes (either black or white) that appear in Lunda-designs 
will be called Lunda-polyominoes. Figure 4.4 displays some Lunda­
polyominoes present in Figure 4.3 . 

In this chapter the number of possible paths of Lunda-an imals 
will be analyzed. Here we define a Lunda-animal as a (black) Lunda­
pentomino (cons isting of 5 cells) with one unit square at one of its 
ends marked as head (H). A Lunda-animal walks in such a way that 
after each step the head occupies a new unit square, the second cell 
moves to the last un it sq uare previously occupied by the head, the third 
cell to the unit square previously occupied by the second cell, etc. In 
other words, two subsequent positions of a Lunda-animal have a 
Lunda-tetromino in common. A path consists of the actual position of 
the Lunda-animal (black in the Fi gures) and all un it squares through 
which the an imal passes (white in the Figures). A path may cross 
itself or repeat certain tracks (see the example in Figure 4.5). 
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::r 

Figure 4.5 

4.2 COllllting the nllmber of possible paths of Lunda-animals 

Starting from the initial position in Fi gure 4.6a, how many paths 
p(n) of 1/ steps are possible for a Lunda-ani mal? 

There are three unit squares (marked 1, 2, 3 in Figure 4.6a) to 
which the head could move, in principle. To the third one, however, it 
cannot move as an inadmissib le situation would emerge, with two 
neighboring grid points having three black unit sq uares between them 
in contradiction with characteri stic (i) [see Figure 4.71- Therefore, 
p(l) = 2: in the first case the animal ' bends its neck ', in the second it 
keeps it straight (see Figure 4. 6b). 

From the ' bent neck ' position, the anima l's head can only 
proceed to the second nei ghboring unit square otherwise inadmissible 
si tuations would emerge. From the ' straight neck ' position, the 
animal's head may once again proceed to two poss ible unit squares (2 
and 3). In total , three paths of two steps are possible: p(2) = 3 (see 
Figure 4.6c). 
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b 

d 

Figure 4 .6 

Of the three final posilions of the Lunda-animal , two have 
stmiglll necks leading each of them to two new posi tions in the nex t 
step, one with a bent neck and one with a stra ight neck. The third has 
a bent nec k, givin g ri se to on ly one new (straight neck) position. In 
total five paths of three steps are possible: p(3) = 5, etc. (See Figure 
4.6d , e, ... ) 

Let there be b(i ) paths of i steps that end in a pos ition with a ben I 
neck, and sCi) with a straight neck. Each of these b(i) positions with a 
benl neck leads to one posi tion with a straight neck after ('+ J) steps. 
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nch of the sCi) positions w ·th a straight neck leads, after one more 
step;. to one position with a bent neck and one with a straight neck. In 
other words for i= l, 2 . ... we have: 

(1) b(i+ 1) = s(i) and 
(2) s{i+ 1) = b(i) + sCi) = pet). 

It follows that for n=2, 3 "', we have 

p(n+ 1) = b(n+ 1) + s(n+ 1) = sen) + p(n) :; p(n-I) + p(n), or 
(3) p(n+ 1) = pen) + p{n-l). 

The recurrence fonnula f(n+ l) = fen) + fen-i) with f(l) = 0, f(2) = 
1 leads to the famous Fibonacci sequence 0 I, 1 2~ 3,5, 8 13~ 21. 34 

1 

As we have pCI) =2 and p(2) = 3, our fmal result is: 
(4) p(n) = f(n+3) for n= 1 2, 3, ... 

If we had defined a Lunda-anima as a (black) unda~m o1nino 
(consisting of m cells) with lU > 5, the answer to the question of how 
many positions are possible after 11 steps is still the same p(n) = f(n+3) 
for m < 9. From m=9 onwards pen) < f(n+3) holds as the following 
,example iUustrates. The only possible step after the position in Figure 
4.7a (m=9) is for the head to go to unit square 3. According to 
dmract,erlstic (i) of Lunda-designs the head cannot go to unit square 1. 
And ifit were to go to unit square, 2 (see Figure 4.7b) fi e neighboring 
unit squares are white which is also iInpossible according to 
characteristic (i) of Lunda-designs. hl other 1Y ords although the 
position in Figure 4.73 was that of a straight neck, there is only one 
possibility for the animal to continue its path. 

1 "As Fibonacci says himself this Ita' ian scholar was trained 
when very young in Bougi1e (in today's Algeria, p.g.) one of the 
Maghrebian scientific poles of the iih century and later he 
reproduced ~ in his Liber Abbaci certain aspects of the 
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aghrebian mathematical tradition' (Djebbar 1995, 25). 
Probably he learnt about the 'Fibonacci sequence when he as 
in orth . frica. 



a b 
Figure 4.7 
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Chapler 5 

ON LUNDA-DESIGNS AND POL-YOMINOES 

5.1 Polyominoes in Lunda-designs 

Polyominoes (cf, Golomb) Ihal appear in Lunda-designs will be 
ca lled Lunda-polyominoes. Figure 5.2 displays some Lunda-
polyominoes present in the Lunda-des igns of Figure 5. 1. 

In this chapter the questi on of how many Iypes of Lunda -n­
omi noes there a re, will be addressed. A fi rst approx imation of the 
number of Lu nda-n-ominoes wi ll be presented. 

a b 
Figure 5, I 
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Figure 5.2 

5.2 Types of Lunda-Polyominoes 

For each /I there is an infinite number of Lunda-n-ominoes. 
Various types of Lunda-n-ominoes are defined on this infinite set by 
notions of equ ivalence in terms of certain groups of isometries of the 
plane. 

Figure 5.3 

Fi gure 5.3 displays four Lunda- 13-ominoes that are equivalent in 
the sense that for any of them there ex ists an appropriate translation, 
rotation or reflection , which maps it (together with its nei ghboring grid 
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points) onto the first. What happens if one translates a Lunda­
polyomi no in such a way that its position relative to the grid changes 
essentially, as in the example in Fi gure 5.4? Is the second polyomino 
also a Lunda-polyom ino? 

Figure 5.4 

In the case of n= \, or n=2, the answer is immediately yes. Let us 
consider now a Lunda-n-omino with n > 2. It may be considered as 
composed of overlapping triominoes. The cells of each of the 
triominoes lie either in the same direction (as in Figure 5.5a, the cells 
are indicated by the letter b for black) or in a hook (as in Figure 5,6a). 
Figures 5.5b and 5,6b show whi ch cells must be wh ite in agreement 
with the second characteristic of Lunda-designs. When one translates 
these triominoes, together with thei r accompanying wh ite cells, one 
unit to the right and then one unit upwards (see Figure 5.5c and 5.6c), 
it transpires that the resulting positions satisfy the second cha racteristic 
too. As this happens with all the successive overlapping triom inoes, 
the same is true for the whole Lunda-n-omino under consideration. 

b 
b 
b 

wb 
wb w 

bw 

b 
Figure 5,5 

wb 
wbw 

bw 

c 
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In other words, in the example of Figure 5.4 we find that the 
second 13-omino is automatically a Lunda-13-omino that is equivalent 
to the first Lunda- I 3-om ino. 

b 
b b 

a 

wb 
w bb 

flv 

b 
Figure 5.6 

wb 
w b b 
#v 

5.3. ApPl"oximalion of Ihe number of LlInda-n-ominoes 

For each type of Lunda-n-omino (with n > 2) there ex ists a 
Lunda-n-omino that has its first two cells in a position like that of 
Figure 5.7a. For its third cell there are two possibilities (see Figure 
5.7b), for its founh cell there are three possibilities (if we do not count 
the abnormal case displayed in Figu re 5.7c, where it is impossible to 
continue with a fifth cell, etc.), for its fifth cell fi ve possibilities, etc. 
Therefore we find for the number a(n) of Lunda-n-ominoes with the 
given 'stan position ': a(l ) = I , a(2) = I , a(3) = 2, a(4) = 3, a(5) = 5, the 
first terms of the famous Fibonacci seq uence fen) with f(2) = f( I) = 1 
and f(n+2) = f(n+ l ) + fen) . Will a(n) = f(n) fo r all n? 

11 2 
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---t11 
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Figure 5.7 
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If grov{th were to be unlimited - as in the case of Lunda·animals 
discussed in the previous chapter - we would have a(n) = f(n). 

Figure 5,8 displays the correspondi ng types of Lunda-n-ominoes 
for n= 1 , ... ,7. 

'. 

4 , P 
4a 4" 

5 ., .... 
5, 

6 ....... 
6a 6b 6b 6" lie 

7 ., 
7b 7b 7d 

7, 7, 

Figure 5,8 
1 13 
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Types that are not symmetrical naturally appear twi ce in the list 
(Figure 5.8), as they may be obtained starting from either end. 
Therefore we have, in principle (if unlimited growth is permitted), for 
the number b(n) of types of Lunda-n-ominoes: 

(4) b(n) ~ [s(n) + a(nll /2, oc b(n) ~ [s(n) + f(n)) 12, 

where s(n) denotes the number of symmetrical types of Lunda -n­
ommoes. 

5.4 Symmetrical types 

To evaluate s(n), consider odd and even f1 separately. 

Case: II is odd 

Fi gure 5.9 displays the symmetrical types for n= l , 3, .. . , 9. Let 
n=2m-l . 

i) Any Lunda-(2m-I)-omino that is invariant under a ha lf-turn may 
be obtained by joining a Lunda-m-omino with the given ' start 

position' to its copy rotated through an angle of 1800 around the 
centre of its first unit cell (see the example in Figure 5. 10). 
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Figure 5. 10 

Therefore there are, at most, a(m)=f(m) Lunda-(2m- 1 )-ominoes 
with rotational symmetry of order 2. 
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of 1800 diagonal axis of symmetry 

Symmetrical types of odd order 
Figure 5.9 
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ii) An odd symmetrical Lunda-n-omino may have a horizontal or 
vertical axis of symmetry only if it is a straight segment, as the 
distance between two hooks curved in the same direction has 
always to be an even number of unit cells (see Figure 5. 11). As 
the straight segment n-minoes have already been taken into 
acount (i), they do not need to be considered again. All the other 
Lunda-n-ominoes of odd order which are invariant under a 
reflection , may be obtained from the hook triomino by joining, in 
a symmetrical way and in agreement with the second 
characteristic of Lunda-designs, the same number of unit cells at 
its two ends. As the number of ways to join k unit cells at each 
end of the hook triomino is at most f(k+ l) (if unlim ited growth is 
permitted), there are at most f(k+l) types of Lunda-(2k+3)­
ominoes with a diagona l axis of symmetry. 
From 2k+3 = 2m- I, it follows that there are at most f(m- I) types 
of Lunda-(2m-1 )-ominoes with a diagonal axis of symmetry. 

I If I 1I I Of I 
Fi gure 5. 11 

In agreement with (i) and (ii), there are, at most, f(m)+f(m- I), that is 
f(m+ I), symmetrical types of Lunda-(2m- I)-ominoes. Thus: 

(5) b(2m-l ) < [s(2m-l) +f(2m- I)) /2 < [f(m+ l) +f(2m-I)) /2. 

Case: II is even 

Let n=2m. 

i) Suppose that open Lunda-2m-ominoes with only a rotational 
symmetry of order 2, exist. Then the centre of rotation can only 
be the midpoint of the common edge of the mth and (m+ I fh unit 
cells. As the image, under a half turn about this point, of the last 
hook before the mth unit cell - both at an even or both at an 
odd distance from the midpoint (see Figure 5.12) - is 
impossible, according to the second characteristic of Lunda­
designs, open Lunda-2m-ominoes with only a rotationa l 
symmetry of order 2 do not exist. 
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t:8 
Figure 5.12 

Open in this context means that the first and last unit square do 
not have a common edge· if this happens we call the unda­
polyomino closed (see the examples in Figure 5.13). 

I II 
I 

I II 
i 

I- - I- : ~ 
! 

I i I 

I 

Examples of closed Ltmda-polyominoes (n = 12 28) 
Figure 5.13 

In ra.ther exceptional cases dosed Lunda,-polyominoes with only 
rotational symmetry of order 2 may exist. he first two appear 
for n- 36 (se,e igure 5.14). 

I 1 I • • • • 
r--- r--

~ ~ '. • ..- • 
r-- - r--

• .....oj • • • ..-
r-- - r--

'. H • • ..-
1--1 I 

• I T I • • • 

Figure 5.14 
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ii) Types of Lunda-2m-ominoes, wh ich are invariant under a 
reflection, may be obtained from types of Lunda-m-ominoes by 
reflecting them in certain horizontal or vertical mirror lines. 

liS 

E EB 

H 

Figure 5. 15 

Figure 5.1 5 displays the symmetrical types for n=2 , .. . , 10. Not 
all of them are admissible. The black Lunda- l O-omino presented 
in Figure 5. 16a is not admitted, as it presupposes the existence of 
the white Lunda-polyomino in Figure 5.16b, which cannot exist 
as consequence of the second characteristic of Lunda-designs. 
Closed symmetrical types with the given start position (s) may 
appear several times, as the example in Figure 5. 17 shows. 

a 

••• ••• 
b 

Figure 5.16 

For m = 6+4k (k = I , 2, ... ) closed Lunda-2m-ominoes exist with 
only a diagonal axis of symmetry (see the examples in Figures 
5.17 and 5. 18). 
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Three equivalent closed Lunda-28-ominoes 
with different 'start positions' 

F igure 5. 17 

Examples of closed Lunda-2m-ominoes 
with only a diagonal axis of symmetry (m= 10, 18) 

Figure 5. 18 

In agreement with (i) and (ii), we have that the number s(2m) of 
types of symmetrical Lunda-2m-ominoes is at most equal to a(m) = 
f(m) for m>2. 
It follows that 

(6) b(2m) < (s(2m) + f(2m)] /2< (f(m) + f(2m)] /2 fN m>2. 
We may conclude that the function c(n) with 

c(n) = [f(m) + f(2m-I)] 12, ifn = 2m-I; 

"nd 
c(n) = [f(m) + f(2m)] 12, ifn=2m, 

where 11/ denotes a natural number, is a first approximation for the total 
number b(n) of types of Lunda-n-om inocs. 
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Table 5. 1 presents the val ues ofb(n) and c(n) for n= l , .... , 10. 

Table 5.1 

n fIn) ~) bI n) ~)-b(~ 
I I I I 0 
2 I I I 0 
3 2 2 2 0 
4 5 2 3 - I 

5 8 4 4 0 
6 13 5 5 0 
7 21 9 9 0 
8 34 12 12 0 
9 55 21 20 I 
10 89 30 26 4 

Fi gure 5. 19 displays the four inadmiss ible 10-ominoes. 

Figure 5.19 
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Chapter 6 

SYMMETRI CA L, C LOSED LUNDA-POLYOMINOES 

In this chapter we wi ll present some attractive examples of 
polyominoes with holes, which are Lunda-pol yominoes in the sense 
that they may appear in Lunda-designs. 

H • • H 

• • 

a 

• 
• 

• • 
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• • 
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Figure 6.1 
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Fi gure 6.1 presents the eight types of symmetri cal closed 28· 
ominoes, which are Lunda·polyominoes_ Figure 6. 2 shows that their 
interiors may be filled in by coloring the unit squares either black or 
white in such a way that the interiors together with the ci rcumscribed 
polyominoes may be part of a Lunda·design. Most ly on ly one 
coloring is possi ble. In the case of the third 28·omino there are two 
possib il ities, as displayed in Figure 6. 2c1 and c2. 

a b cl 

c2 d e 

f g h 

Figure 6.2 

Fi gure 6,3 presents the twenty·seven symmetrica l closed Lunda· 
36·ominoes with colored interiors. Figure 6.4 shows the seven 
possible symmetri cal interiors of the second Lunda-36·omino in 
Figure 3. 
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a b c 

d e f 

g h 
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• 
J k I 

Figure 6.3 (l SI part) 
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m n o 

p q 

s t u 

v w x 

Figure 3 (2nd part) 
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y z z l 

Figure 3 (Conclusion) 

Figure 6.4 
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Figure 6.5 presents four closed Lunda-68-ominoes with their 
interiors colored. Each of these figures has four mirror symmetries, as 
do the Lunda-76-ominoes and Lun da-100-ominoes with colored 
interiors, in Figures 6.6 and 6.7 respectively. 

Figure 6.5 

126 



Figure 66 
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Figure 6.7 
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Figure 6.8 shows an example of a closed symmetri cal Lun da ­
IOO-omino and Lunda-268-omino. Figure 6.9 shows them as part of 
symmetrical Lunda-designs of dimensions 28x28 and 40x40. 

a 

b 
Figure 6.8 
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a 
Figure 6.9 

• 
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• 
b 

Figure 6.9 
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Chapter 7 

EXAMPLES OF LUNDA-SPIRALS 

Figure 7.1 shows part of two black (one shown as grey) and two 
whi te spira ls, which together form an infinite Lunda-design with 
fourfold symmetry. The eight spirals in Figure 7.2 together constitute 
an infin ite Lunda-design invariant under a half-turn. Figure 7.3 
displays part of a zigzagging spiral embedded in an infinite Lunda­
design. 

Figure 7.1 
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Figure 7.2 
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Figure 7,3 
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Chapter 8 

LUNDA STRIP AND PLANE PATTERNS 

The concept of Lunda-design may be extended in a natural way 
to one- and two-dimensional Lunda-patterns. 

8.1 One-dimensional Lunda-patterns (Lunda-strip-pauerns) 

Consider an infinite grid, IG(n), ha ving as points (2p,2q-l ) with 
O<q<n, where p denotes a whole num ber, and q and n natural num bers. 
Figure 8.1 displays IG(2). 

o 0 0 0 • • • 0 

Figure 8.1 

A one-dimensional Lunda-pattern (of height II) may be defined 
as a black-and-white pattern (between the horizontal lines y=O and 
y=2n) with the following characteristics: 

(i) Of the four unit squa res between two arbitrary (vertical or 
horizonta l) neighboring grid points , two are always black and 
two are white (see Figure 8.2a); 

, 
Figure 8.2 

IlEi 
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(ii) Of the two border unit squares of any grid point in the first or 
last row, one is always black and the other wh ite (see Figure 
8.2b) . 

b 
Figure 8.2 

Figure 8.3 

Pattern means that the design has trans lation symmetry. Figure 
8.3 presents examples of one-dimensional Lunda-patterns of height 2. 
In each of the examples, we also have - as in the case of finite 
Lunda-designs - a third characteristic : 

(iii) In each column there are as many black as white unit squares. 

If this happens, we call the one-dimensional Lunda-pattern st l'on g. 
Figure 8.4 shows a Lunda-strip-pattern of height 2 that is not strong. 

Figure 8.4 

Lunda-strip-patterns may be either one-color or two-color 
patterns. A pattern is called a two-co lor pattern if there is some rigid 
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motion (rotation, translation, mirror reflection, or glide reflection) of 
the strip, which interchanges the colors everywhere. Classification by 
symmetry results in seven one-color and seventeen two-color strip 
pattern classes. For each of the twenty-four one-color and two-color 
classes it is possible to construct Lunda-strip-patterns which belong to 
it, as the examples in Figure 8.5 show (with the grid points unmarked). 
We use the internationally accepted notation ofBelov (1956), whereby 
each class is indicated by four symbols pxyz as follows: 

(p) The first symbol is p if no translation reverses the two colors; it 
is p' ifsome translation reverses the colors. 

(x) The second symbol, x , is 1 if there is no vertical reflection 
consistent with color; /II if there is a vertical reflection which 
preserves color; III ' if all vertical reflections reverse the colors ; 

(y) The third symbol, y , is J if there is no horizontal reflection or 
glide reflection; III if there is a horizontal reflection which 
preserves color; III' if there is a horizontal reflection which 
reverses colors (except in the two cases beginning with p ', in 
which two cases y is a); a' if there is no horizonta l refl ection, but 
the shortest glide reflection reverses colors; and is a otherwise. 

(z) The fourth symbol , z, is 1 if there no half-turn consistent with 
color; 2 if there are half-turns which preserve color; 2' if all half· 
turns reverse colors (cf Washburn & Crowe, 1988,69). 

a: p'mm 2 
Figure 8.5 (l SI part) 
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b: pmm2 

c: pm 'm2 ' 

d: p'ma2 

e: pm'm '2 

f: pmm '2' 
Figure 8.5 (continued) 
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g: pilla '2 ' 

h: pm'a2' 
Figure 8.5 (continued) 
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i: pm 'a'2 

j : pma2 

k:p '1I2 

I: pll2 
Figure 8,5 (continued) 
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o:pmll 

p: pm '11 
igure 8.5 (continued) 
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p:pm'll 

q:p'J mJ 

r:plm l 
Figure 8,5 (continued) 
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s:p'lal 

tplm'l 

u: pIa 'I 

v: pIal 

w:p'lIl 

x: pilI 
Fi gure 8,5 (continued) 
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x: plll 
Figure 8.5 (conclusion) 

8.2 Two-dimensional Lunda-paltems 

Consider an infinite grid, JG, having as points (2p, 2q), where p 
and q denote arbitrary whole numbers. 

A two-dimensional Lunda-pattel'n may be defined as a two­
dimensional black-and-white plane pattern with the following 
cha racteristic : 

(i) Of the four unit squares between two arbitrary (vertical or 
horizontal) neighboring grid points, two are always black and 
two are whi te. 

Two-dimensional or periodic pattern means that the design 
admits translations in two or more directions. A two-dimensional 
pattern is called a two-color pattern if there is some rigid motion of the 
plane, which interchanges colors everywhere. Two-color, two­
dimensional patterns are also called mosaic or tiling. 

Classification by symmetry results in seventeen one-color and 
fo rty-six two-color, two-d imensional pattern classes. Woods (1936) 
was the first to illustrate all the forty-s ix classes of mosaics. His 
mosaics are reproduced in Washburn & Crowe (1988, 74-75). It is 
interesting to note that two of his patterns (33 and 38) are also Lunda­
patterns. They are shown in Figure 8.6. 

Washburn & Crowe produced flow charts, which facilitate the 
classification of one-color and two-color, two-dimensional patterns 
(1988, pp. 128-131, 140-141, 154-155, 160, 162). 

It is impossible to construct Lunda-patterns for each of the 
classes of two-dimensional patterns, as by definition, two-dimensiona 1 

Lunda-patterns cannot admit 600 and 1200 rotations. 
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a:pc/'m'm 

b: pc/'glll' 
Figure 8.6 

In the following pages we wi ll present examples of two­
dimensional Lunda-patterns. Figures 8.7 displays one-color, two-

dimensional Lunda-patterns, which admit 1800 and 900 rotations 
respectively. Figures 8.8 and 8.9 show two-color, two-dimensional 

Lunda-patterns, which admil 1800 and 90° rotations consistent with 
color respectively. 
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a: pmm 

" Figure 8.7 (I part) 
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b: e ll/III 

Figure 8.7 (continued) 
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. .. . , 1 .:' •. C'pm"'g-
igure 8.7 (conclusion) 

a:Pb'mm 

'b: Ph 'gm 

igure 8 .. 8 (It part) 



c: C '/1//1/ 

d: p 'gg c 

e: Pc 'mg 

Figure 8.8 (continued) 
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f: Cf//m ' 

h: pili 'g 
Figure g.g (continued) 
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· " L: pili 11/ 

Fi gure 8.8 (continued) 
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• •• J: em 11/ 

k: pg'g' 
Figure 8,8 (continued) 
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i: Pb'2 

Figure 8.8 (conclusion) 

a: p.J '/11/11 ' 

Figure 8.9 ( IS\ pan) 
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b: p-l'm 'm 

Figure 8.9 (continued) 



b: p.J 'm 'm 

Figure 8.9 (continued) 
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c: Pc '4111111 

Figure 8.9 (continued) 



d: p.J 'gill . 

e: p.J . 
Fi gure 8.9 (continued) 
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e: p.J ' 
Figure 8.9 (conclusion) 

Reference 

Washburn, Dorothy & Crowe, Donald (1 988), SYllllllelrie.\· oj Gil/lUre. 
lheory and Practice oj Plane Palrern Analysis, University of 
Washington Press, Seattle, 299 pp. 
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Chapter 9 

ON THE GEOMETRY OF CELTIC KNOTS AND 
THEIR LUNDA-DESIGNS' 

George Bain (1951), his son lain Bain (1986), Aidan Meehan 
(1 99 1) and Peter Cromwell (1993) analyzed the construction methods 
of the beautiful Celtic knot works that illuminate the pages of the Book 
of Kells and the Lindisfarne gospels and decorate Picti sh metalwork 
and stone crosses in the British Isles (8th and 9th centuries AD). 
Together with the Celtic spirals and key patterns these knot works may 
be interpreted, in the words of the late John Fauvel (1990, p.6), as 
Celtic ethnomathematics. Harald Gropp (1996) draws attention to 
calendar reckoning as part of Celtic mathematics. In this chapter, I 
will present examples of Celtic knots and show how they generate 
attractive black-and-white designs that I ca ll Lunda-designs. Global 
and local symmetry properties of Lunda-designs wi ll be analyzed, as 
well as suggestions for the educationa l use of these designs wi ll be 

. 
gIven. 

Figure 9.1 a presents the Celtic foundation knot (Meehan, 1991 , 
p.8). It may be generated in the following way. Consider the 2x2 
point grid in Figure 9.1 b. Imagine a li ght ray emi tted from A, makin g 

an angle of 450 with the sides of the square and being reflected on the 
sides of the square and on a double-sided mirror between the points B 
and C (Fi gure 9. 1 c). After several reflections the li ght ray returns to A 
(F igure 9.1 d). Figures 9. 1 e and 9.1 f present the smooth version of the 
closed polygonal path of the light ray. This version will be called a 
mirror curve (cf Gerdes, 1990, etc. ; Jablan, 1995). The Celtic 

1 First published in: Ma/hemalic~· inSchool(UK).VoI.28.No. 3, May 
1999,29-33. 
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foundation knot is topologically equivalent to the mirror curve in 
Figure 9.1 f: the lower zigzag loop has been smoothened into an arc. 
Many Celtic knots can be generated in a si milar way. 

, 

''1" , , , . , . 
• , 
• , 
• , 
• , 
, , , • , • , • 

• , 
• , 
• , 

• , 

A 

d 

, , , , 
• • • • , , , , 
• , 

• • 

, , , 
• 
, , , , 

, 
• • • , , , , 

b 

e 
Figure 9. 1 

A 

f 

Fi gure 9.2 presents a second example: Consider a 4x5 point grid 
(Figure 9,2a) . In the centre betwee n some (horizontal or vertical) 
neighboring grid points double s ided mirrors a re placed hori zontally or 
verticall y (Figure 9.2b). Figure 9. 2c shows the subsequent mirror 
curve, that is equivalent to the Celtic knot in Figure 9.2d, the Lagore 
Crannog knot (Meehan, 1991 , p. 11 3), 

In the two examples the di stance between two horizontal or 
vertical ne ighboring grid points has been chosen equal to 2 units, and 
the di stance between a border grid point and the rectangu lar border 
equal to one un it By conseq uence, each of the mirror curves passes 
exactly once through each of the unit squares in which the respective 
rectangular grids can be decomposed. This enables us to color the 
successive un it squares through which the curve passes alternately 
black and white. Starting with a white unit sq uare, we obtai n in the 
case of the Celtic foundation and Lagore Crannog knots (see Figu res 
9,3 and 9.4) the black·and-white des igns presented in Figures 9.3c and 
9.4b, 
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• • • 

• • • 

• • • 
• • • 

, 

c 

a 

• 

• 
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• 

• .-. 
I 

• • • 

• • • 
I 

• .-. 

e 
Figure 9.2 

b 
Figure 9.3 

• .-. 
I 
• • • 

• • • 
I I 
• .-. 

b 

d 

c 
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a b 
Figure 9.4 

This type of black-aod-white design I call LlIl1da-design. I 
discovered them in the context of analyzing a generalization of a type 
of figure traditionally drawn by Cokwe storytellers in the sand to 
illustrate their tales, fables and proverbs (cf. Gerdes, \990, 1995, 
1997a). The Cokwe live predominantly in northeastern Angola, a 
region called Lunda. Hence the name Lunda-design . Lunda -designs 
have interest ing local and global sym metries. 

Figure 9.5 presents further examples of Lunda-designs gen erated 
by mirror curves that are topologically equivalent to Celtic knots 
reproduced by Meehan (1991, pp. 123, 122, 142) and Wi lson (1983 , 
PI. 28). Students may be asked to look in the literature for 
reproductions of Celtic knots, and construct, if possib le, their 
corresponding mirror curves and Lunda·design s. Which properties do 
all these Lunda-designs have in common? What happens in between 
neighboring grid points? What happens between the border and the 
grid points near to it? 

• • 
• • 

a 

• 
• 
• • • • 

b 
Figure 9.5 (first part) 
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c 

d 
Figure 9.5 (second part) 

Once conj ectures have been fo und, they may be tested. For 
instance, are they verified in the cases of the Lunda-designs presented 
in Figures 9.6 and 9.7, generated by mirror curves that are 
topologically equivalent to Celtic knots reproduced by Meehan (1991 . 
p. 130) and Davis (1991 , p. 21). 

• • • • • • • 
• 

• • • 
• • • .~ • 
• • 

• • 

• • • • • • 
a 

Figure 9.6 (first part) 
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b 
Figure 9.6 (second part) 

, 
Figure 9.7 (first part) 

Figure 9.8 displays some symmetrical parts of the Lunda-design 
In Figure 9.7. 
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b 
Figure 9.7 (second part) 

Figure 9.8 (first part) 
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Figure 9. 8 (second part) 

As may be proven (Gerdes, 1996), Lunda-designs have the 
following two local (two-color) symmetry properties: 

(i) Along the border each grid point always has one black unit 
square and one white un it square associated with it (see the 
example in Figure 9.9a); 

(ii) Of the four unit squares between tw o arbitrary (vertical or 
horizontal) neighboring grid points, two are black and two are 
wh ite (see the examples in Figure 9.9b). 

I r I 
b 

Figure 9.9 

From this, it follows that Lunda-designs have a gl oba l symmetry, 
characterized by the phenomenon that: 

(iii) in each row (and in each co lumn) there are as many black uni t 
squares as there are white unit squares. 

Conversely, as for each black-and-white design that satisfies the 
characteristics (i) and (ii) a mirror curve may be produced that 
generates it (for a proof, see Appendix I), these characteristics can be 
used to define Lunda-designs . 
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• 
• 

• • 
• • 

a b 

d 

e f 
Figure 9. 10 

In each of the examples of Celtic knots presented so far, the 
mirror ClIlVe passes through all unit squares of the rectangular grid. In 
other words, the knots are composed of only one line. Let us call such 
knots mOflofinear or I- linear. However, there are polylinear Celtic 
knots, composed out of more than one line. Figure 9.1 Oa presents the 
topological equivalent ora 2-linear knot reproduced by Meehan (1991, 
p. 146). if we color now alternately black and white the unit squares 
through which that curve passes that 'starts ' in the lower left corner of 
the grid, only part (in this case, half) of the unit squares wi ll be colored 
(see Figure 9. lOb). As there exist two possibilities to color the unit 
squares through which the second closed curve passes (see Figure 
9. IOc and d), there emerge two associated black-and-white designs 
(see Figure 9. 1 De and f). It is easy to verify that both are Lunda-

169 



designs. More in general, it may be shown that a n-linear knot, 
topologically equivalent to a n-linear mirror curve design, generates 

2n-1 Lunda-designs. Both associated Lunda-designs in Figure 9.IOe 
and f have a two-color symmetry axis: reflection in their horizontal 
axes interchanges black and white. 

A ll Lunda-designs constructed in this paper have two-color 
symmetries. The Lunda -designs in Figure 9.5a and b have horizontal 
two-color axes, whereas their generating mirror curves are not 
symmetrica l. The Lunda-designs in Figures 9.3 , 9.4, 9.5c and d, and 
9.6 have horizontal and vertical two-color symmetries. The Lunda­
design in Fig ure 9.7 has a two-color rotational symmetry: a half tum 
about its centre interchanges black and white. This attractive Lunda­
design displays various other interesting local symmetries, as the 
reader may verify. 

• 
• 
• 
• 

Figure 9. 11 

Figure 9. 11 presents the topological equivalent of a monolinear 
Celtic knot. The Lunda-design generated by this mirror curve is the 
one already presented in Figure 9.IOe. This constitutes a concrete 
example of the fact that distinct knots may generate the same Lunda­
design. The general question of how the number of Lunda-designs 
depends on the dimensions of the reference grids is still open. Some 
answers for particular classes of Lunda-designs have been found (cf. 
Gerdes, 1996). 

Another interesting topic for further investigation is that of 
sequences of Lunda-designs. Figure 9.12 presents the first elements of 
a sequence of mirror curves. The fifth element is topologically 
equivalent to a monol inear Celtic knot (see Figure 9. 13), reproduced 
by Jones (1856, T. LXIV, no. 10). This sequence of mirror curves 
generates a sequence of Lunda-designs, of which the first elements are 
represented in Figure 9.14. Is it possible to predict how th is sequence 
will continue without constructing first the mirror curves and then 
generating the corresponding Lunda-designs? 
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a b 

d 

c 
Figure 9. 12 

Figure 9. 13 

Figure 9. 14 (first part) 

c 

IS 

17 1 



'8 
Figure 9, 14 (second part) 

One way to find an answer to th is question is the following. Let 
us divide each of the Lunda-designs belonging 10 the seq uence into 
vertical slices of a width of to un it squares. There are 8 distinct slice 
types, as il lustrated in Figure 9, IS: A and A', B and B', C and C', and 
D and D' are each other negative. When we rotate C about its centre 

through an angle of 1800 we obtain B. Using thi s notation we have I] 

= A, 12 = ABC, 13 = BDDCA ' , etc. (see Fi gure 9.16). Can we 

discover some structure in this letter pattern? 

A A' B B' c C' o 0' 

Figure 9.15 
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1 

2 

3 

4 

5 

6 

7 

8 B 

A 

B D 

D D 

B 
A B 
B C 

D C 

C A' 

A 

A B 

B D D 

D D C 

C A B' 
A B' D' 

A' B' e 
B' e A' 

Figure 9. 16 

C 

C A' 

A' B' e 
D' D' e A 

D' e A B C 

A' B D D C A' 

B D D C A' B' e 

In each of the diagonal directions, there seems to be cycle of 
length 4: (AABB), (BOOB),.", (ACA 'C'), (BCH'C'), etc. (see Figure 
9.17a). Extrapolation on the basis of these experimental data leads us 
to conjecture a letter pattern built up out of repeating 'zigzag rhombi ' 
(see Figure 9. I 7b). 

B 

B D 

A B C 

A B C A 

B D D C A' 

B D D C A' B' 

A 

A B C 

D D C 

D C A' 

A B' D' 

B' D' D' 

B' e A' 

e A' B 

, 
Figure 9. 17 

A' 

B' e 
D' e A 

e A B C 

B D D C A' 

D D C A' B' e 
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B D D , D D C 

A B C A B' 
A B C A B' D' 

B D D C A' B' C' 

D C A' 

A B'O'D'C' 

" D' D' C' 

B' C' A' 

A' 

B 

B 

A B C 

B D D C A' 

D D C A' 

C A B' D' 

A B' D' 0' 

C A' B' 
A' " C' A' , D 

D' D' C' A B C A 

D' C' A B C A B' 
A' B D D C A' B' 

D C A' 

C A B'O'D'C' 

A " D' D' C' 

B' C' A' 

A' 

b 
Figure 9. 17 

A 

A B C 

B D D C A' 

D D C A' B' 

C A B' D' D' 

A B' D' D' C' 

B' C' A' 

A' 

Figure 9.18 

B C 

D C A' 

C A' " C' 

B' D' D' C' A 

D' D' C' A B C 

C' A' B D D C A' 

B D D C A' B' C' 

B C A B'D' D'C' 

A " D' D' C' 

B' C' A' 

A' 

C' 

C' 

The 'zigzag rhombus ' has interesting symmetries . It is composed 
of two halves (see Figu re 9. 18): each of the letter elements of the 
second one is the negative of the correspondin g letter element of the 
first one. Moreover each half is invariant under a hal f turn about its 
centre (sec Figure 9. 19). 
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a b 
Figure 9. J 9 

Figure 9.20 presents the black·and-white 'zigzag rhombus ', We 
may can the black-and-white designs in Figure 9.19 and 9.20 
po/yomina/ Lllnda-designs (cf Gerdes, \996, 1997). Figure 9.2tb 
presents another polyomina l Lunda-design, generated by a Celtic knot 
(Figure 9.21a), reproduced by Jones (1856, PI. LXIV). For other 
generalizations, like ci rcular, hexagonal, and polyhedral Lunda­
designs and (multicolor) Lunda -k-designs, and Lunda-strip and plane 
patterns, see Gerdes (1996, 1997, \ 998a). Figure 2,27 shows the first 
three phases of bui lding up a Lunda-fractal , generated by the Celtic 
foundation knot (cf Figure 9. 1 a and 9.3c). 

175 



a 

a 

176 

b 
Figure 9.20 

Figure 9.21 

c 

b 
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Chapter 10 

RECENT VARIATIONS AND GENERALIZATIONS' 

Instead of enumerating the unit squares through which a mirror­
curve passes modulo 2 and thus producing a Lunda-design, it is 
possible to enumerate them modulo oS , where s designates any divisor 
of the total number of unit squares. For instance, Figure 10. I displays 
the mod 3 and mod 5 designs generated in this way by the Cokwe 
chased-chicken mirror-curve (Figure 1.1). The question arises how to 
characterize the local and global symmetries of these mirror-curve­
modulo-s designs. Conversely, is it possible to define these designs on 
the basis of their symmetries? 

1 

a b 
Figure 10.1 

Last section of the paper "Symmetrical explorations inspired by 
the study of African cultural activities," published in : Istvan 
Hargittai & Torvand Laurent (Eds.), SYllllllelly 2000, Portland 
Press, London, 2002, 75-89. 
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Instead of enumerating the unit squares mod 2, that is, 0 101, etc. 
one may enumerate them 0011 , etc. If this is done, regular mirror­
curves generate horizonta l or vertical bar designs. Fi gure J 0.2b 
illustrate the example generated by the mirror-design in Figure 10.2a. 
Figure 1 0.2c displays an irregular mirror-design and its corresponding, 
symmetri cal OOII-design (Figure 10.2d). 

• • • • • I • .-. 
• • 
1-. 

• • • I • • I • 
• I • • • • • 

b 

c d 
Fi gure 10.2 

Instead of enumerating the unit squares mod 2 or coloring them 
alternately black and white, it is possible to color them all in the same 
way. For instance, it is possible to color each unit square through 
which the (polygonal) mi rror-curve passes on its right side black and 
on its left side wh ite (light grey in the Figures), as Figure 10.3a 
indicates. For instance, the chased-chicken mirror-curve produces the 
design in Figure 10.3 b. All regular mirror-curves generate similar 
designs of repeating blocks (Figure 10.3c). Irregular mirror-designs 
and their corresponding mirror-curves may produce other types of 
righi-flag-designs . For exam ple, the mirror-design in Figure 10.3d 
generates the right-flag-design in Figure 10.3e. The local symmetries 
of these right-fiag-designs are characterized by three pairs (pos itive 
and negative) of possible situati ons between horizontal neighboring 
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grid points (Figure I O.3f) and one pair of possible situations between a 
border grid point and the border (Figure lO.3g). 

, b 

o o o o o 

o 0-0 o o 

I I 
o o o o o 

o o o o o 

d 

e 
Figu re 10.3 (first part) 

1'1 



x 
f g 

Figure 10.3 (second part) 

What will happen if the flags alternate from left to right (Figure 
10.4a) instead of being al ways on the ri ght side? Fi gures IO.4b and c 
show a regular and an irregular mirror curve design of the same 
dimensions that generate the same left-right·nag-d es ign (Figure 
lOAd). Will all left-right-flag-designs be of thi s type? I f so, what may 
be the reason of this sym metric invariance? 

• • • • 
-

• I • • I • -
• • • • 

b 
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, 

d 
Figure 10.4 

• 
• 
• 

• • • 
.-. • 
• I • • 

c 
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In the case one uses four colors fo r the left and right flags and 
they appear in the sequence indicated in Figure IO_Sa, the mirror­
curves in Figures IQ,Sb and c produce the four-color designs in Figure 
IO.Sb and c. By reducing these designs modulo 2, that is by taking the 
third color equal to the first and the fourth equal to the second, the 
two-color designs in Figures 10.Sd and e are generated. Will a ll 
regular mirror-curves lead to the same type of four-co lor design? 
Which symmetries and other characteristics do these four-color-flag­
designs have in common? And what can be said about their two-color 
counterpa rts? 

b c 

d e 
Figure 10.5 
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The right-flag-designs, left-right-flag-designs and the 
aforementioned four-color-flag-designs are all particular instances of 
eight- color-fl ag designs generated by coloring the unit squares 
through which a mirror-curve passes successively on the left and on 
the right with ei ght colors as schematically indicated in Figure 10.6a . 
In the case a=b=e=f, c=d=g=h, and notoc, our eight-color designs 
become Lunda-designs; in the case a=c=e=g, b=d=f h, and a;>'ob, they 
become ri ght-flag-des igns, etc. Which are the local and globa l 
symmetries displayed by these eight-color designs? For insta nce, 
Figure 10.6b and c show the eight-co lor designs generated by the 
regular and irregular mirror-curve designs in Figure 10.4b and c. 
Which characteristics do they have? 

a 

b 
Fi gure 10.5 (first part) 
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c 
Figure 10.6 (second part) 

Another type of design is produced when it is also admitted that 
the flags may appear not only in left and right position, hut also in up 
and down position, in agreement, for example, with the four-color 
scheme displayed in Figure 1O. 7a . Figure IO. 7b and c present the 
four-co lor designs produced in this way by the mirror-curve designs of 
Figure 1 DAb and c. By reducing these designs modulo 2, the two­
color des igns in Figure 10. 7d and e are generated . 

, 
Figure 10.7 (first part) 
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b c 

d e 
Figure 10.7 

These left-right, up-down flag designs together with the 
aforementioned generalization of eight-color flag designs, belong to a 
more general class of 16-coloUI" des ign s that are generated by coloring 
the unit squares through which a mirror-curve passes successively 
according to the scheme in Figure 1O.8a. Figure 1O.8b shows the 16-
colour design produced by the reduced chased-chicken mirror-curve in 
Figure I DAb. All regular mirror-curves generate similar designs. In 
these des igns the colors in the unit squares appear in four positions, t 
(position I), t- (2), 1. (3), and ---,) (4) (see Figure 1O.9a). Figure IO.9b 
displays the distribution of the positions I , 2, 3 and 4 in the 
corresponding grid. A question open for further research is which are 
the common symmetry characteristics of all 16-color designs, 
including those generated by irregular mirror-curves. Is it possible to 
define these 16-color designs independently from mirror-curves, as it 
was possible in the particular case of Lunda-designs? 
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Figure 10_8 
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a 

1 23 4 1 234 
4 3 2 1 4 32 1 
3 4 1 2 3 4 1 2 
2 1 4 3 2 1 4 3 
1 234 1 234 
4 3 2 1 432 1 
3 4 1 2 3 4 1 2 

• j, 
~ 

• 
1 234 
4 3 2 1 
3 4 1 2 
2 1 4 3 
1 234 
4 3 2 1 
34 1 2 

2 1 432 1 4 32 1 4 3 
1 234 
4 3 2 1 
3 4 1 2 
2 1 4 3 

1 234 
4 32 1 
3 4 1 2 
2 1 4 3 

b 
Figure 10.9 

1 234 
4 3 2 1 
3 4 1 2 
2 1 4 3 

• 
~ 

l 
• 
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Appendix] 

PROO S 0 SOME 'IHE'OREMS CONCE G 

TIlE RELATIO SHIP BET'WEE 

RECTANGLE-FILLING MIRRO.RC RVES A- D 
L DA-DESIG S 

In this appendix we pro ' e the theoretns announced in Chapter 2 
concerning the relatio ship behveen (rectangle·fIlling) lmrror curves 
[or mono linear mirror lines desibTfis J and mxn unda designs. 

mxn Lunda-design is a black-and-white design on a rectangular 
grid RG[m~n defm,ed by the followi -g characteristics: 

i) Of the two border unit squares of any grid point in the first or 
last row, or in the first or last column one is always white and 
the 0 her black 

ii) Of the fow· unit squares between two arbitrary (vertical or 
horizon al neighboring grid point.s~ two are always black and 
two are whit.e. 

Theorem 1 

Eery (rectangle-filling mirror curve generates a Lunda-design. 

Proof 

s the tnirror curve tra erses the rectangular grid RG[m n] the 
successhr,e unit squares it passes through are colored alternately black 
and white. ' he black-and-white design it generates in this way 
satisfies property (i), since the m'irror curve embraces all th grid 
points and when embracing a border grid point the two unit squ.ares it 
then passe thro 19b .on th.e b.order side are of different colors. 
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Let us now assume that a pair of (hori zontal or vertical) 
neighboring grid points exist in between which there are 3 or 4 white 
unit squa res instead of 2 (i n the case of 3 or 4 black unit squares the 
reasoning will be the same). 

D 

Figure A. I 

We first consider the case of 3 white unit squares (see Figure 
A I ). When the curve enters the white unit square A it may only 
continue its way through the grid by entering the black unit square D, 
si nce after a white unit squa re a black un it square always follows. 
When later the curve enters the 2x2 sq uare by the white unit square 8 
or C, it cannot leave the 2x2 square. This means that the curve is not 
closed, what is in contradiction with the fact that the curve is a 
(rectangle-filling) mirror curve. The same reasoning applies when the 
curve first enters the wh ite uni t square 8 or C. 

If the 2x2 square consisted of four white unit squares, the curve 
could on ly enter it, and not leave it (see Figure A.2). This once again 
contradicts the fact that the curve is closed. This completes the proof. 

Figure A2 

Theorem 2 

190 

Any mxn Lunda-design has the following two properties: 

(i) In each row there are HI black and 11/ white unit squares; 
(ii) In each column there are n black and n white unit squares. 
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Proof: 

We prove (i) row by row. 

( I) In the first row (= border row) there are as many black as white 
unit squares, as in agreement with the definition of a Lunda ­
design [property (i)] each border grid point has one black and 
one white adjacent unit sq uare. Moreover, si nce the total 
number of unit squares in the fi rst row is 2m, it follows that both 
the number of black and the number of white unit squares are 
equal to m . 

5 
4 

3 

2 
1 

... ..... .. .. .. .. 

.. .. ... ..... 

Figure A.3 

(2) Consider now the first two rows of unit squares together (see 
Figure A.3). Between the successive grid points there are always 
2 black and 2 white unit squa res [property (ii)j. As there are III 

grid points on a row, there are in total 4(m-l) unit squares 
between them, of which half are black and half are white, i.e. 
2(m- I). We have still to count the black and white un it squares 
in the first and last border columns, which are adjacent to grid 
points in the first row of grid points. Once more, according to 
property (i), in each of these I x2 rectang les we have one black 
and one white unit square. Therefore the total number of black 
unit squares in the first two rows of unit squares is 2(m- 1 )+2 = 

2m. 
As, according to ( I), the total number of black unit squares in the 
first row is III, it follows that the tota l number of black un it 
squares in the second row is 2m-m = m. The same is true for the 
while unit squares . 
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(3) Consider the second and third rows of unit squares together, 
This time these unit squares lie between vertically neighboring 
grid points. As there are 11/ of such pairs of vertically 
neighboring grid points, there are in agreement with property 
(ii), 2m black and 2m white unit squares in the second and third 
row together. Since, according to (2), the number of black unit 
squares in the second row is Ill, it follows that the number of 
black unit squares in the third row is 2m-m = m. The same is 
true for the white unit squares. 

Advancing in this way by considering pairs of successive rows of 
unit squares, it follows that in all rows there are exactly /II black and III 

white unit squares. On symmetry grounds , it immediately follows that 
there are f1 black and 11 white unit squares in each co lumn of unit 
squares. This completes the proof. 

Theorem 3 

Proof 

Given a mxn Lunda-design, it is possible to construct a mirror 
curve that generates it. 

The construction may be executed in the following steps: 

(I) Substitution of the black-and-white 2xl rectangles in the border 
rows and columns by single curve elements, as shown in Figure 
A.4; 

Figure AA 

(2) Substitution of the black-and-white 2x2 squares, between 
vertically neighboring grid points, by pai rs of curve elements 
which are locally compatible with the coloring (see Figure A.5); 
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Figure A.S 

(3) Substitution of the black-and-white 2x2 squares, between 
horizontally neighboring grid points, by pairs of curve elements 
which are locally compatible with the coloring (see Figure A. 6). 

Figure A. 6 

Figure A. 7a-d presents a concrete example of the execution of the 
fi rst three steps of construction. 

The total set of curve elements thus constructed constitutes one or 
more closed mirror curves [i.e. a monolinear or a pol ylinear mirror 
lines design, cf. chapter I), which together embrace all grid po ints 
(four curves in the example [Figure A. 7e]). 

(4) If there is a crossing of two curves, it may be substituted by a 
couple of opposite 'moon ' elements that is locall y consistent 
with the coloring (see Figure A. S). In this way the two curves 
are transformed into one new curve and the total number of 
curves is reduced by one. If after th is step there are sti ll 
crossings of distinct curves, the step may be repeated (see steps e 
to fand fto g in Figure A. 7). 
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Figure A.7 (first part) 
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e f 

g h 
Figure A.7 (condusion) 
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I " 

Figure A.8 

(5) If there are no more crossings of distinct curves but n10re than 
on.e curv-e still eXl ts~ then there must be one or m.ore horizontal 
· kissings' of opposite . moon elements belonging to different 
curves. Such a horizontal kissing ~ has to be substituted by a 
vertical kissing (see Figure A .9). This type of ubstitution does 
not affe-ct the coloring of the unit squares and reduces the tota~ 
number of curves by one. 

Figure A.9 

Repeating step (5) a many tim-es a necessary. the total number 
of C" rrves becomes gradually reduced. tUltil a rectangle-filling mirror 
curve [i.e. a monolinear mirror lines design cf chapter I] remains (see 
in the exatnple- of Figure A.7the tTansition from g to h). The final 
position of the mirrors is in the middle of the remaining opposite 
'moon' elements (see the example in igure A.1h . 

Thiscotnpletes the proof 
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